ref 推荐系统开源软件列表汇总和点评

列出了librec跑出的rating-prediction的结果  (TrustSVD: Collaborative Filtering with Both the Explicit and Implicit Influence of User Trust and of Item Ratings)

Algorithm list ---- ### Recommender Algorithm List
algorithm short name directory path superClass
ConstantGuessRecommender constantguess baseline AbstractRecommender
GlobalAverageRecommender globalaverage baseline AbstractRecommender
ItemAverageRecommender itemaverage baseline AbstractRecommender
ItemClusterRecommender itemcluster baseline ProbabilisticGraphicalRecommender
MostPopularRecommender mostpopular baseline AbstractRecommender
RandomGuessRecommender randomguess baseline AbstractRecommender
UserAverageRecommender useraverage baseline AbstractRecommender
UserClusterRecommender usercluster baseline ProbabilisticGraphicalRecommender
AoBPRRecommender aobpr cf.ranking MatrixFactorizationRecommender
  Rendle S, Freudenthaler C. Improving pairwise learning for item recommendation from implicit feedback[C]// WSDM 2014
AspectModelRecommender aspectmodelranking cf.ranking ProbabilisticGraphicalRecommender
  Hofmann T, Puzicha J. Latent class models for collaborative filtering[C]//IJCAI. 1999
BPRRecommender bpr cf.ranking MatrixFactorizationRecommender
  Rendle S, Freudenthaler C, Gantner Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]// AUAI 2009
CLIMFRecommender climf cf.ranking MatrixFactorizationRecommender
  Shi Y, Karatzoglou A, Baltrunas L, et al. CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering[C]//RecSys. 2012
EALSRecommender eals cf.ranking MatrixFactorizationRecommender
  He X, Zhang H, Kan M Y, et al. Fast matrix factorization for online recommendation with implicit feedback[C]//SIGIR. 2016
FISMaucRecommender fismauc cf.ranking MatrixFactorizationRecommender
  Kabbur S, Ning X, Karypis G. Fism: factored item similarity models for top-n recommender systems[C]//KDD. 2013
FISMrmseRecommender fismrmse cf.ranking MatrixFactorizationRecommender
  Kabbur S, Ning X, Karypis G. Fism: factored item similarity models for top-n recommender systems[C]//KDD. 2013
GBPRRecommender gbpr cf.ranking MatrixFactorizationRecommender
  Pan W, Chen L . GBPR: Group Preference Based Bayesian Personalized Ranking for One-Class Collaborative Filtering[C]//IJCAI. 2013
ItemBigramRecommender itembigram cf.ranking ProbabilisticGraphicalRecommender
  Wallach H M. Topic modeling: beyond bag-of-words[C]//ICML2016
LDARecommender lda cf.ranking ProbabilisticGraphicalRecommender
  Griffiths T. Gibbs sampling in the generative model of latent dirichlet allocation[J]// TOIS 2014
ListwiseMFRecommender Listwisemf cf.ranking MatrixFactorizationRecommender
  Shi Y, Larson M, Hanjalic A. List-wise learning to rank with matrix factorization for collaborative filtering[C]//RecSys 2010
PLSARecommender plsa cf.ranking ProbabilisticGraphicalRecommender
  Hofmann T. Latent semantic models for collaborative filtering[J]// TOIS. 2014
RankALSRecommender rankals cf.ranking MatrixFactorizationRecommender
  Takács G, Tikk D. Alternating least squares for personalized ranking[C]//RecSys. 2012
RankSGDRecommender ranksgd cf.ranking MatrixFactorizationRecommender
  M Jahrer. Collaborative Filtering Ensemble for Ranking.// JMLR 2012
SLIMRecommender slim cf.ranking AbstractRecommender
  Ning X, Karypis G. Slim: Sparse linear methods for top-n recommender systems[C]//ICDM 2011
WBPRRecommender wbpr cf.ranking MatrixFactorizationRecommender
  Gantner Z, Drumond L, Freudenthaler C, et al. Personalized Ranking for Non-Uniformly Sampled Items[C]//KDD Cup. 2012
WRMFRecommender wrmf cf.ranking MatrixFactorizationRecommender
  Hu Y, Koren Y, Volinsky C. Collaborative filtering for implicit feedback datasets[C]//ICDM. 2008
AspectModelRecommender aspectmodelrating cf.rating ProbabilisticGraphicalRecommender
  Hofmann T, Puzicha J. Latent class models for collaborative filtering[C]//IJCAI. 1999
ASVDPlusPlusRecommender asvdpp cf.rating BiasedMFRecommender → MatrixFactorizationRecommender
  Koren Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model[C]//KDD. 2008
BiasedMFRecommender biasedmf cf.rating MatrixFactorizationRecommender
  Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]//Computer, 2009
BNPoissMFRecommender bnpoissmf cf.rating MatrixFactorizationRecommender
BPMFRecommender bpmf cf.rating MatrixFactorizationRecommender
  Salakhutdinov R, Mnih A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo[C]//ICML 2008
BPoissMFRecommender bpoissmf cf.rating MatrixFactorizationRecommender
  Gopalan P, Hofman J M, Blei D M. Scalable recommendation with poisson factorization[J]// arXiv 2013.
FMALSRecommender fmals cf.rating FactorizationMachineRecommender
  Rendle S. Factorization machines with libfm[J]//TITS 2012
FMSGDRecommender fmsgd cf.rating FactorizationMachineRecommender
  Rendle S. Factorization machines with libfm[J]//TITS 2012
GPLSARecommender gplsa cf.rating ProbabilisticGraphicalRecommender
  Hofmann T. Collaborative filtering via gaussian probabilistic latent semantic analysis[C]//SIGIR 2003
LDCCRecommender ldcc cf.rating ProbabilisticGraphicalRecommender
  Wang P, Domeniconi C, Laskey K B. Latent dirichlet bayesian co-clustering[C]// Database 2009
LLORMARecommender llorma cf.rating MatrixFactorizationRecommender
  Lee J, Kim S, Lebanon G, et al. Local Low-Rank Matrix Approximation[J]// ICML 2013
MFALSRecommender mfals cf.rating MatrixFactorizationRecommender
  Zhou Y, Wilkinson D, Schreiber R, et al. Large-scale parallel collaborative filtering for the netflix prize[C]//AAIM 2008
NMFRecommender nmf cf.rating MatrixFactorizationRecommender
  Lee D D, Seung H S. Algorithms for non-negative matrix factorization[C]//NIPS 2001
PMFRecommender pmf cf.rating MatrixFactorizationRecommender
  Salakhutdinov R, Mnih A. Probabilistic Matrix Factorization[C]//NIPS 2007
RBMRecommender rbm cf.rating MatrixFactorizationRecommender
  Salakhutdinov R, Mnih A, Hinton G. Restricted Boltzmann machines for collaborative filtering[C]//ICML2007
RFRecRecommender rfrec cf.rating MatrixFactorizationRecommender
  Gedikli F, Bagdat F, Ge M, et al. RF-REC: Fast and accurate computation of recommendations based on rating frequencies[C]//IEEE(CEC) 2011
SVDPlusPlusRecommender svdpp cf.rating BiasedMFRecommender → MatrixFactorizationRecommender
  Koren Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model[C]//KDD 2008
URPRecommender urp cf.rating ProbabilisticGraphicalRecommender
  Marlin B M. Modeling User Rating Profiles For Collaborative Filtering[C]//NIPS. 2003
BHFreeRecommender bhfree cf ProbabilisticGraphicalRecommender
  Barbieri N, Manco G, Ortale R, et al. Balancing prediction and recommendation accuracy: hierarchical latent factors for preference data[C]//SDM 2012
BUCMRecommender bucm cf ProbabilisticGraphicalRecommender
  Barbieri N, Costa G, Manco G, et al. Modeling item selection and relevance for accurate recommendations: a bayesian approach[C]//RecSys 2011
ItemKNNRecommender itemknn cf AbstractRecommender
  Deshpande M, Karypis G. Item-based top-n recommendation algorithms[J]//TOIS 2004
UserKNNRecommender userknn cf AbstractRecommender
  Konstan J A, Miller B N, Maltz D, et al. GroupLens: applying collaborative filtering to Usenet news[J]//Communications of the ACM, 1997
EFMRecommender efm content BiasedMFRecommender → MatrixFactorizationRecommender
  Zhang Y, Lai G, Zhang M, et al. Explicit factor models for explainable recommendation based on phrase-level sentiment analysis[C]//SIGIR 2014
HFTRecommender hft content BiasedMFRecommender → MatrixFactorizationRecommender
  McAuley J, Leskovec J. Hidden factors and hidden topics: understanding rating dimensions with review text[C]//RecSys 2013
SBPRRecommender sbpr context.ranking SocialRecommender
  Zhao T, McAuley J, King I. Leveraging social connections to improve personalized ranking for collaborative filtering[C]//CIKM 2014
BPTFRecommender bptf context.rating TensorRecommender
  Schein A, Paisley J, Blei D M, et al. Bayesian poisson tensor factorization for inferring multilateral relations from sparse dyadic event counts[C]//SIGKDD 2015
PITFRecommender pitf context.rating TensorRecommender
  Rendle S, Schmidt-Thieme L. Pairwise interaction tensor factorization for personalized tag recommendation[C]//WSDM 2010
RSTERecommender rste context.rating SocialRecommender
  Ma H, King I, Lyu M R. Learning to recommend with social trust ensemble[C]//SIGIR 2009
SocialMFRecommender socialmf context.rating SocialRecommender
  Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks[C]//RecSys 2010
SoRecRecommender sorec context.rating SocialRecommender
  Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks[C]//RecSys 2010
SoRegRecommender soreg context.rating SocialRecommender
  Ma H, Zhou D, Liu C, et al. Recommender systems with social regularization[C]//WSDM 2011
TimeSVDRecommender timesvd context.rating BiasedMFRecommender → MatrixFactorizationRecommender
  Koren Y. Collaborative filtering with temporal dynamics[J]. Communications of the ACM, 2010, 53(4): 89-97.
TrustMFRecommender trustmf context.rating SocialMFRecommender
  Yang B, Lei Y, Liu J, et al. Social collaborative filtering by trust[J]//IJCAI 2016.
TrustSVDRecommender trustsvd context.rating SocialRecommender
  Guo G, Zhang J, Yorke-Smith N. TrustSVD: Collaborative Filtering with Both the Explicit and Implicit Influence of User Trust and of Item Ratings[C]//Aaai 2015
AssociationRuleRecommender associationrule ext AbstractRecommender
  Kim C, Kim J. A recommendation algorithm using multi-level association rules[C]//WI 2003
ExternalRecommender external ext AbstractRecommender
PersonalityDiagnosisRecommender personalitydiagnosis ext AbstractRecommender
PRankDRecommender prankd ext RankSGDRecommender → MatrixFactorizationRecommender
  Hurley N J. Personalised ranking with diversity[C]//RecSys 2013
SlopeOneRecommender slopeone ext AbstractRecommender
  Lemire D, Maclachlan A. Slope one predictors for online rating-based collaborative filtering[C]//SIAM 2005
HybridRecommender hybrid hybrid AbstractRecommender
  Zhou T, Kuscsik Z, Liu J G, et al. Solving the apparent diversity-accuracy dilemma of recommender systems[J]//PNAS. 2010

### Algorithm Configuration List #### Baseline ##### ConstantGuessRecommender ``` rec.recommender.class=constantguess ``` ##### GlobalAverageRecommender ``` rec.recommender.class=globalaverage ``` ##### ItemAverageRecommender ``` rec.recommender.class=itemaverage ``` ##### ItemClusterRecommender ``` rec.recommender.class=itemcluster rec.pgm.number=10 rec.iterator.maximum=20 ``` ##### MostPopularRecommender ``` rec.recommender.class=mostpopular ``` ##### RandomGuessRecommender ``` rec.recommender.class=randomguess ``` ##### UserAverageRecommender ``` rec.recommender.class=useraverage ``` ##### UserClusterRecommender ``` rec.recommender.class=usercluster rec.factory.number=10 rec.iterator.maximum=20 ``` #### Collaborative Filtering (item ranking) ##### AOBPRRecommender ``` rec.recommender.class=aobpr rec.item.distribution.parameter = 500 rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=100 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 rec.recommender.isranking=true rec.recommender.ranking.topn=10 ``` ##### AspectModelRecommender ``` rec.recommender.class=aspectmodelranking rec.iterator.maximum=20 rec.recommender.isranking=true rec.recommender.ranking.topn=10 data.splitter.cv.number=5 rec.pgm.burnin=10 rec.pgm.samplelag=10 rec.topic.number=10 ``` ##### BPRRecommender ``` rec.recommender.class=bpr rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=100 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnRate.bolddriver=false rec.learnRate.decay=1.0 rec.recommender.isranking=true rec.recommender.ranking.topn=10 ``` ##### CLIMFRecommender ``` rec.recommender.class=climf rec.iterator.learnrate=0.001 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=100 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 rec.recommender.isranking=true rec.recommender.ranking.topn=10 ``` ##### EALSRecommender ``` rec.recommender.class=eals rec.iterator.maximum=10 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.recommender.isranking=true rec.recommender.ranking.topn=10 # 0:eALS MF; 1:WRMF; 2: both rec.eals.wrmf.judge=1 # the overall weight of missing data c0 rec.eals.overall=128 # the significance level of popular items over un-popular ones rec.eals.ratio=0.4 # confidence weight coefficient, alpha in original paper rec.wrmf.weight.coefficient=4.0 ``` ##### FISMaucRecommender ``` rec.recommender.class=fismauc rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=10 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 rec.recommender.isranking=true rec.recommender.ranking.topn=10 rec.fismauc.rho=2 rec.fismauc.alpha=1.5 ``` ##### FISMrmseRecommender ``` rec.recommender.class=fismrmse rec.iteration.learnrate=0.01 rec.iterator.maximum=100 rec.recommender.isranking=true rec.fismrmse.rho=1 rec.fismrmse.alpha=1.5 ``` ##### GBPRRecommender ``` rec.recommender.class=gbpr rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=100 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 rec.recommender.isranking=true rec.recommender.ranking.topn=10 ``` ##### ItemBigramRecommender ``` rec.recommender.class=itembigram data.column.format=UIRT data.input.path=test/ratings-date.txt rec.iterator.maximum=100 rec.topic.number=10 rec.recommender.isranking=true rec.recommender.ranking.topn=10 rec.user.dirichlet.prior=0.01 rec.topic.dirichlet.prior=0.01 rec.pgm.burnin=10 rec.pgm.samplelag=10 ``` ##### LDARecommender ``` rec.recommender.class=lda rec.iterator.maximum=100 rec.topic.number = 10 rec.recommender.isranking=true rec.recommender.ranking.topn=10 rec.user.dirichlet.prior=0.01 rec.topic.dirichlet.prior=0.01 rec.pgm.burnin=10 rec.pgm.samplelag=10 data.splitter.cv.number=5 # (0.0 may be a better choose than -1.0) data.convert.binarize.threshold=0.0 ``` ##### ListwiseMFRecommender ``` rec.recommender.class=listwisemf rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=100 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 rec.recommender.isranking=true rec.recommender.ranking.topn=10 ``` ##### PLSARecommender ``` rec.recommender.class=plsa rec.iteration.learnrate=0.01 rec.iterator.maximum=100 rec.recommender.isranking=true rec.topic.number = 10 rec.recommender.ranking.topn=10 # (0.0 may be a better choose than -1.0) data.convert.binarize.threshold=0.0 ``` ##### RankALSRecommender ``` rec.recommender.class=rankals rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=100 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 rec.recommender.isranking=true rec.recommender.ranking.topn=10 rec.rankals.support.weight=true ``` ##### RankSGDRecommender ``` rec.recommender.class=ranksgd rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=30 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 rec.recommender.isranking=true rec.recommender.ranking.topn=10 ``` ##### SLIMRecommender ``` rec.recommender.class=slim rec.similarity.class=cos # can only use item similarity rec.recommender.similarities=item rec.iterator.maximum=40 rec.similarity.shrinkage=10 rec.recommender.isranking=true rec.recommender.ranking.topn=10 rec.neighbors.knn.number=50 rec.recommender.earlystop=true rec.slim.regularization.l1=1 rec.slim.regularization.l2=5 ``` ##### WBPRRecommender ``` rec.recommender.class=wbpr rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=10 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.bias.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 rec.recommender.isranking=true rec.recommender.ranking.topn=10 ``` ##### WRMFRecommender ``` rec.recommender.class=wrmf rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=20 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 rec.recommender.isranking=true rec.recommender.ranking.topn=10 # confidence weight coefficient, alpha in original paper rec.wrmf.weight.coefficient=4.0 ``` #### Collaborative Filtering (rating prediction) ##### AspectModelRecommender ``` rec.recommender.class=aspectmodelrating rec.iteration.learnrate=0.01 rec.iterator.maximum=100 ``` ##### ASVDPlusPlusRecommender ``` rec.recommender.class=asvdpp rec.iteration.learnrate=0.01 rec.iterator.maximum=20 ``` ##### BiasedMFRecommender ``` rec.recommender.class=biasedmf rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=1 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.bias.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 ``` ##### BNPoissMFRecommender ``` rec.recommender.class=bnpoissmf rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=100 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 ``` ##### BPMFRecommender ``` rec.recommender.class=bpmf rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=100 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 ``` ##### BPoissMFRecommender ``` rec.recommender.class=bpoissmf rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=100 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 ``` ##### FMALSRecommender ``` data.input.path=arfftest/data.arff data.column.format=UIR data.model.splitter=ratio data.convertor.format=arff data.model.format=arff rec.recommender.class=fmals rec.iterator.learnRate=0.01 rec.iterator.maximum=100 rec.factor.number=10 ``` ##### FMSGDRecommender ``` data.input.path=arfftest/data.arff data.column.format=UIR data.model.splitter=ratio data.convertor.format=arff data.model.format=arff rec.recommender.class=fmsgd rec.iterator.learnRate=0.001 rec.iterator.maximum=100 rec.factor.number=10 ``` ##### GPLSARecommender ``` rec.recommender.class=gplsa rec.iteration.learnrate=0.01 rec.iterator.maximum=100 rec.recommender.smoothWeight=2 rec.recommender.isranking=false rec.topic.number = 10 ``` ##### LDCCRecommender ``` rec.recommender.class=ldcc rec.iteration.learnrate=0.01 rec.iterator.maximum=100 ``` ##### LLORMARecommender ``` rec.recommender.class=llorma rec.llorma.global.factors.num = 10 rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=100 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 ``` ##### MFALSRecommender ``` rec.recommender.class=mfals rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=100 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 ``` ##### NMFRecommender ``` rec.recommender.class=nmf rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=100 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 ``` ##### PMFRecommender ``` rec.recommender.class=pmf rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=50 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 ``` ##### RBMRecommender ``` rec.recommender.class=rbm rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=100 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 ``` ##### RFRecRecommender ``` rec.recommender.class=rfrec rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=100 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 ``` ##### SVDPlusPlusRecommender ``` rec.recommender.class=svdpp rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=13 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.impItem.regularization=0.001 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 ``` ##### URPRecommender ``` rec.recommender.class=urp rec.iteration.learnrate=0.01 rec.iterator.maximum=100 ``` #### Collaborative Filtering (rating prediction and item ranking) ##### BHFreeRecommender ``` rec.recommender.class=bhfree rec.pgm.burnin=10 rec.pgm.samplelag=10 rec.iterator.maximum=100 # true for item ranking, false for rating prediction rec.recommender.isranking=true rec.recommender.ranking.topn=10 ``` ##### BUCMRecommender ``` rec.recommender.class=bucm rec.pgm.burnin=10 rec.pgm.samplelag=10 rec.iterator.maximum=100 rec.pgm.topic.number=10 rec.bucm.alpha=0.01 rec.bucm.beta=0.01 rec.bucm.gamma=0.01 # true for item ranking, false for rating prediction rec.recommender.isranking=true rec.recommender.ranking.topn=10 ``` ##### ItemKNNRecommender ``` rec.recommender.class=itemknn # true for item ranking, false for rating prediction rec.recommender.isranking=false rec.recommender.ranking.topn=10 rec.recommender.similarities=item rec.similarity.class=pcc rec.neighbors.knn.number=50 rec.similarity.shrinkage=10 ``` ##### UserKNNRecommender ``` rec.similarity.class=pcc rec.neighbors.knn.number=50 rec.recommender.class=userknn rec.recommender.similarities=user # true for item ranking, false for rating prediction rec.recommender.isranking=false rec.recommender.ranking.topn=10 rec.filter.class=generic rec.similarity.shrinkage=10 ``` #### Content ##### EFMRecommender ``` data.input.path=efmtest/efm.txt rec.recommender.class=efm rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=100 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 rec.recommender.lambda.user=0.05 rec.recommender.lambda.item=0.05 rec.bias.regularization = 0.01 ``` ##### HFTRecommender ``` data.input.path=hfttest/hft.txt/ rec.recommender.class=hft rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=2 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 rec.eval.enable = 1 rec.recommender.lambda.user=0.05 rec.recommender.lambda.item=0.05 rec.bias.regularization = 0.01 ``` #### Context(item ranking) ##### SBPRRecommender ``` data.appender.class=social data.appender.path=test/test-append-dir rec.recommender.class=sbpr rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=200 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.social.regularization=0.01 rec.bias.regularization=0.01 rec.factor.number=128 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 rec.recommender.earlystop=false rec.recommender.verbose=true rec.recommender.isranking=true rec.recommender.ranking.topn=10 ``` #### Context(rating prediction) ##### BPTFRecommender ``` rec.recommender.class=bptf rec.iteration.learnrate=0.01 rec.iterator.maximum=100 ``` ##### PITFRecommender ``` rec.recommender.class=pitf rec.iteration.learnrate=0.01 rec.iterator.maximum=100 ``` ##### RSTERecommender ``` data.appender.class=social data.appender.path=test/test-append-dir rec.recommender.class=rste rec.iterator.learnrate=0.05 rec.iterator.learnrate.maximum=0.05 rec.iterator.maximum=200 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.social.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 rec.recommender.earlystop=false rec.recommender.verbose=true rec.user.social.ratio=0.8 ``` ##### SocialMFRecommender ``` data.appender.class=social data.appender.path=test/test-append-dir rec.recommender.class=socialmf rec.iterator.learnrate=0.05 rec.iterator.learnrate.maximum=0.05 rec.iterator.maximum=100 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.social.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 rec.recommender.earlystop=false rec.recommender.verbose=true ``` ##### SoRecRecommender ``` data.appender.class=social data.appender.path=test/test-append-dir rec.recommender.class=sorec rec.iterator.learnrate=0.05 rec.iterator.learnrate.maximum=0.05 rec.iterator.maximum=1000 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.rate.social.regularization=0.01 rec.user.social.regularization=0.01 rec.social.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 rec.recommender.earlystop=false rec.recommender.verbose=true ``` ##### SoRegRecommender ``` data.appender.class=social data.appender.path=test/test-append-dir rec.recommender.class=soreg rec.recommender.similarities=social rec.similarity.class=pcc rec.iterator.learnrate=0.001 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=10 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.social.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 rec.recommender.earlystop=false rec.recommender.verbose=true rec.similarity.shrinkage=10 ``` ##### TimeSVDRecommender ``` rec.recommender.class=timesvd data.column.format=UIRT data.input.path=test/ratings-date.txt rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=100 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.learnrate.decay=1.0 ``` ##### TrustMFRecommender ``` data.appender.class=social data.appender.path=test/test-append-dir rec.recommender.class=trustmf rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=30 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.social.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 rec.recommender.earlystop=false rec.recommender.verbose=true rec.social.model=T ``` ##### TrustSVDRecommender ``` data.appender.class=social data.appender.path=test/test-append-dir rec.recommender.class=trustsvd rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=50 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.social.regularization=0.01 rec.bias.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 rec.recommender.earlystop=false rec.recommender.verbose=true ``` #### Extra ##### AssociationRuleRecommender ``` rec.recommender.class=associationrule ``` ##### ExternalRecommender ``` rec.recommender.class=external ``` ##### PersonalityDiagnosisRecommender ``` rec.recommender.class=personalitydiagnosis rec.PersonalityDiagnosis.sigma=0.1 ``` ##### PRankDRecommender ``` rec.recommender.class=prankd rec.similarity.class=cos rec.recommender.similarities=item rec.similarity.shrinkage=10 rec.iterator.learnrate=0.01 rec.iterator.learnrate.maximum=0.01 rec.iterator.maximum=50 rec.user.regularization=0.01 rec.item.regularization=0.01 rec.factor.number=10 rec.learnrate.bolddriver=false rec.learnrate.decay=1.0 rec.sim.filter=4.0 ``` ##### SlopeOneRecommender ``` rec.recommender.class=slopeone rec.eval.enable=true rec.iterator.maximum=50 rec.factory.number=30 rec.iterator.learn.rate=0.001 rec.recommender.lambda.user=0.05 rec.recommender.lambda.item=0.05 ``` #### Hybrid ##### HybridRecommender ``` rec.recommender.class=hybrid rec.hybrid.lambda=0.1 rec.iterator.maximum=50 rec.factory.number=30 rec.iterator.learn.rate=0.001 rec.recommender.lambda.user=0.05 rec.recommender.lambda.item=0.05 ```



留言

登录 请先登陆, 再留言!