题目中的Sequential并不是核心,感觉没怎么在文章中体现?指的是sequential learning?
Scenario-Specific倒是充分利用了,如不同类,不同tag都可以是不同的scenario
我觉得本文主要关心的问题:当样本比较少的时候,通常的SGD中必有的几个元素(初始值,learning ratio,early-stop policy)可能不适用于few-shot learning。原因是过拟合。
所以本文提出了针对同时拥有多个scenario情况下,如何从上面3个元素出发,解决这个过拟合问题。
1)初始值。不同scenario共用一套初始值(共同学习和更新),这样至少可以保证在初始值这块能够保证单个scenario的样本不那么少。
2)learning ratio。传统的可能设置搜索区域。而本文采用的是这个learning ratio可以放到LSTM里去更新和调整,作为模型参数(scenario-specific)。
3)early-stop policy。同理,这个policy关联一个stop概率,这个概率也是放到LSTM里去调整和学习,然后决定什么时候去stop参数的更新。
最后通过调整好的参数,去更新初始值等。2)和3)的结合,避免了像传统方法那样,一条路学到死,学出一个过拟合的模型。
文献题目 | 去谷歌学术搜索 | ||||||||||
Sequential Scenario-Specific Meta Learner for Online Recommendation | |||||||||||
文献作者 | Zhengxiao Du | ||||||||||
文献发表年限 | 2019 | ||||||||||
文献关键字 | |||||||||||
few-shot learning; meta learning; LSTM; early-stop policy; learning rate; | |||||||||||
摘要描述 | |||||||||||
Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-toend framework, namely Scenario-specific Sequential Meta learner (or s2Meta ). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation1. Deployment is at the Guess You Like session, the front page of the Mobile Taobao; and the illustration video can also be watched from the link2. |