核心思想:

基于NCF的框架,将传统的user/item embedding结合利用(用用户访问过的item embedding来表达的user embedding;或者用访问过该物品的用户的user embedding表达的item embedding)。这样一个有两个user embedding以及两个item embedding。然后相互组合,确定最后的predication。

 

其中,用用户访问过的item embedding来表达的user embedding的过程中,用到了attention model。

 

A novel attempt of DELF is that we employ dual embeddings to learn four kinds of deep interactions for each user-item pair, which enables DELF to generalize two principled CF methods, i.e., NCF and NSVD. To the best of our knowledge, this work is the first neural approach that leverages dual user and item embeddings for recommendation with implicit feedback.



留言

登录 请先登陆, 再留言!