本文主要介绍了Transfer Learning的概念和分类,以及一些相关的TL算法。主要内容:

(1)Source Domain and Target Domain (TL focus on Target Domain) (特征空间,边缘概率分布,学习目标)

(2)相关的领域:learning to learn; life-long; knowledge transfer; inductive transfer; multitask learning; knowledge consolidation; context-sensitive learning; knowledge-based inductive bias; metalearning; incremental/cumulatie learning;

(3)迁移学习分类:a) Inductive TL; b) Unsupervised TL; c) Transductive TL

(4)TL方法分类:

  • Instance-transfer (样本加权迁移)
  • Feature-representation-transfer (common feature space,特征转换迁移)
  • Parameter-transfer (share common parameter迁移)
  • Relational-knowledge-transfer (样本之间的关系迁移?)

(5)negative transfer (计算source domain和target domain之间的距离 )

(6)几个思考方向: a)迁移什么;b)怎么迁移;c)什么时候迁移



留言

登录 请先登陆, 再留言!