
Service Package Recommendation for Mashup
Development Based on a Multi-level Relational

Network

Jian Cao(B), Yijing Lu, and Nengjun Zhu

Department of Computer Science and Engineering, Shanghai Jiaotong University,
Shanghai, People’s Republic of China

{cao-jian,luyjcathy,zhu nj}@sjtu.edu.cn

Abstract. With the number of services growing explosively, it has been
a serious problem selecting appropriate services for mashup develop-
ment. In this paper, we come up with a Multi-level Relational Network
(MRN) based approach for service recommendation in mashup develop-
ment, which captures deep relationships among services on top of latent
topic, tag and service network. Specifically, by modeling the correlation
among services, representing it as a Quadratic Knapsack Problem and
solving it using Branch and Bound algorithm, we are able to recommend
a package of services, which are complementary and possible to be used
together in a mashup. Experiments on a realistic mashup data set have
shown its effectiveness.

Keywords: Mashup creation · Multi-level relational network · Service
package recommendation

1 Introduction

With the advent of Web 2.0, mashup, as a novel service composition implemen-
tation, is developing rapidly. There are some websites or communities providing
supports for mashup, such as Yahoo Pipes1, ProgrammableWeb2, etc. Despite
the convenience to create a mashup, there are still troubles finding suitable
services to compose, because of the large amount of services available. As is
often the case, users type down a few words describing the functionality of their
mashups to be developed, and then get stuck on which service to choose. There-
fore, recommending services in mashup development has been a vital problem.
There is already some reasearch aiming to solve this. Information retrieval tech-
nology can be used to match the descriptions of mashup and APIs. It is intuitive
but ignores the knowledge that can be captured from existing mashups. Another
common approach is to discover frequent service composition sequences from his-
torical mashups. In this case, when some services are chosen, other services can

1 pipes.yahoo.com.
2 www.programmableweb.com.

c© Springer International Publishing Switzerland 2016
Q.Z. Sheng et al. (Eds.): ICSOC 2016, LNCS 9936, pp. 666–674, 2016.
DOI: 10.1007/978-3-319-46295-0 46

http://www.pipes.yahoo.com
www.programmableweb.com


Service Package Recommendation 667

be recommended by searching relating frequent service composition sequences.
However, in this case, the newly published services have no chance to be recom-
mended. Moreover, these two approaches can only recommend optional services
with similar function. Obviously, in mashup development, it is more useful to
recommend a set of compatible services, rather than a list of similar services.

In this paper, we call the problem of recommending a set of compatible
services for mashup development “service package recommendation”. The prob-
lem we intend to solve is how to recommend a service package when a textual
description for the mashup to be developed is given.

Our work is distinguished by three key contributions: (1) We propose a MRN
model, which can capture the deep relationships among services and support ser-
vice recommendation. (2) We formalize the service package recommendation as
a Quadratic Knapsack Problem and solve it using Branch and Bound algorithm.
(3) We carry out experiments on realistic data set which show that our approach
is effective.

The remaining sections are organized as follows: Sect. 2 describes related
work. In Sect. 3, we present our MRN model. In Sect. 4, we formalize the service
package recommendation problem and describe in detail how it can be solved.
The experiments on realistic dataset are presented in Sect. 5. Finally, we draw a
conclusion of this paper in Sect. 6.

2 Related Work

One major service recommendation approach takes advantage of historical fre-
quent service composition patterns for recommendation [1,2]. However, simply
relying on frequent sequence fails in the situations where new patterns can be
adopted, or when new services are published.

Since users are searching for some APIs to use, adopting traditional informa-
tion retrieval technologies is also an intuitive method [3]. Furthermore, Chune
Li et al. [4] adopted relational topic model in mashup development, which take
into account the historical associations between mashup and API. Similar to
topic model, tag as a user-driven way to feature mashup and APIs, is also capa-
ble of annotating frequent patterns [5]. These research gives us the inspiration
that semantic approaches, though not working well singly, are helpful if properly
used.

Some researchers are also investigating the possibility of applying recom-
mender system and approaches in e-commerce into mashup domain [6–8] . But
in our problem where only description is provided, these approaches cannot be
applied directly.

Furthermore, there is some research trying to make use of more information
to improve the recommendation. Among those approaches, the most widely used
information is social relationship [9,10]. However, such social-aware methods rely
too much on a complete social network. Once social information is incomplete
or absent, they are not going to work well.



668 J. Cao et al.

Our MRN model integrates topics, tags and services and their inherent rela-
tionships in a more comprehensive way. In addition, in the hope of recommend-
ing services with complementary functionality, we get inspiration from [11] which
implemented bundle recommendation (similar to package recommendation) in
e-commerce.

3 The Multi-level Relational Network Model

Our approach is based on the MRN model, which involves the relationships of
topics, tags and services. In the rest of this section, we introduce each of the
layers in detail.

3.1 Service Network

The bottom layer of the MRN is the service network. Once two services appear
in the same mashup, we record them as a service pair (si, sj). And thus, we can
construct a service network, whose edge weight (i, j) indicates how many times
(si, sj) are connected based on historical mashup information.

To use service network, we assign a score between the given mashup and each
of the candidate APIs upon service layer. The score is denoted as service utility.
In the rating step, for mashup mi and service sj , the service utility is constructed
as follows: we first obtain a list of services RSmi

relevant to mi through topic
model, and then accumulate the edge weights between services on top of service
network.

3.2 Tag Network

For a mashup mi, the tags it has are denoted as Tagmi
= {tagmi,1, tagmi,2, · · · ,

tagmi,j , · · · }. Services si also have their tags, denoted as Tagsi
= {tagsi,1, tagsi,2,

tagsi,3, · · · , tagsi,j , · · · }. We apply the association rule mining method described
in [5] to discover the relationships between tags. For each mashup mi, we consider
Tagmi

to be related to all the tags belonging to Smi
. And also, since all the

services in Smi
are composed together, each pair of them is considered being

associated in the tag network.
By identifying all the tag pairs in the mashup repository, we can get a network

Tag network, in which the weight of each edge (i, j) represents how many times
tagi and tagj are associated.

Given a mashup and a candidate set of APIs, we can assign a utility score
between the mashup and each API from the viewpoint of tag network. In another
word, we try to describe which API is closer to the mashup in a quantity way
based on tag network. This can be done by taking out the tags of mashup and
API, and accumulating the weight of the edge between each tag pair.



Service Package Recommendation 669

3.3 Topic Network

It is very useful to apply topic model in recommendation. LDA is used to model
our resources. For each mashup and API, we collect their descriptions as corpus
and extract a topic distribution. A topic distribution for mashup mi is denoted
as Topicmi

= {topicmi,1, topicmi,2, topicmi,3, · · · , topicmi,#TN}, in which #TN
is a number manually defined. Top K topics in the distribution are chosen to be
relevant topics.

We use topic model as a part of our rating metrics, in the similar way we
use tags. A topic pair (topici, topicj) is considered associated if they belong to a
mashup and its API respectively, or to two APIs belonging to the same mashup.
Finally, we can construct a topic network, the weight of each edge (i, j) represents
how many times topici and topicj are connected.

Moreover, like tag utility, we assign a score called topic utility to measure the
cooperation degree between a mashup and API connection from the viewpoint
of topic network, by cross-multiplying the relevant topics and adding their scores
over topic network.

4 Service Package Recommendation

Package recommendation is sometimes called bundle recommendation, especially
in e-commerce. Bundle originally refers to a set of items that customers consider
or buy together [11]. When recommending a list of services to users, we want
them to have the highest utilities, not only to the mashup, but also internally
to each other. Thus, we can say that we are not recommending a list of services,
but rather a package of services.

4.1 Model Construction

We propose our new model to calculate the total utilities. Given a mashup mD

and a set of services, we use a vector x to denote which service we pick into the
final result. xi is 0 if si is not chosen, and 1 if chosen. Then, the total utility can
be denoted as:

Utotal(mD, x) =
∑

i

U(mD, si)xi +
∑

i<j

U(si, sj)xixj (1)

The goal of service package recommendation is to find a set of k items that
maximize the total utility. Let:

ri = U(mD, si)

Qi,j =

{
U(si, sj) if i �= j

0 if i = j

The total utility can now be described as:

Utotal(x) = rT x + xT Qx (2)



670 J. Cao et al.

It is essentially a case of Quadratic Knapsack Problem [12].

max
x∈{0,1}n,|x|=k

rT x + xT Qx (3)

4.2 Solving QKP

Having r = 0, it is not hard to see that this problem reduces to a k-clique prob-
lem. Since k-clique problem is a NP-hard problem, it is supported by theorem
that our problem is also a large-scale NP-hard problem. Luckily, we get the
inspiration from [11] that solving the problem for all the items is equivalent to
solving it for a carefully constructed candidate set.

As said by Zhu et al., it is observed in practice that only a few items have
a high score, so it is intuitively understandable to construct a candidate set.
As to our data set, we also observed such situation that to a given description
of mashup, only a small set of services have relatively high utilities, while the
majority have a low value. It is rigorously proved in [11] that items dominated
by k or more items will not appear in an optimal selection, in which dominance
is a relationship between items. Item α dominants item β if:

rα + Qαα + min
A⊆U,|A|=k−1

∑

i∈A,i �=α

(Qαi + Qiα) >

rβ + Qββ + max
B⊆U,|B|=k−1

∑

i∈B,i �=β

(Qβi + Qiβ)

That implies we only need to find items dominated by no more than k − 1
items, which makes the candidate set size different for every item. Computa-
tions and empirical results show that the resultant candidate size is very small
compared to the whole dataset. To decrease computational time and cost, it is
acceptable to choose a fixed candidate set size m for every item, which is slightly
larger than empirical data. So in our model, it is sufficient to solve the problem
on top of a candidate set Cset.

We update our model as follows, where rc and Qc are the responding variables
for Cset. With the size of potential candidates largely reduced, our problem is
now tractable.

max
x∈{0,1}n,|x|=k

rT
c x + xT Qcx (4)

We use Gurobi3 as an assistance, which is a state-of-art mathematical program-
ming solver.

5 Experiments

5.1 Dataset and Compareative Methods

The dataset we use comes from ProgrammableWeb.com, namely the largest
mashup information sharing community. We crawled ProgrammableWeb and get
3 http://www.gurobi.com/.

http://www.ProgrammableWeb.com
http://www.gurobi.com/


Service Package Recommendation 671

7674 valid mashups as well as 10240 services (called APIs in ProgrammableWeb).
For each mashup and service, we got its full information especially service lists
for mashup, description and annotating tags for both of them. There are totally
462 different tags involved. We selected information retrieval, recommendations
based on single layer network and recommendation without considering package
effect as our comparative methods.

5.2 Model Training

We use 90 % of the mashups to learn the model, and the rest 10 % to test. There
are many parameters in our model. In this section, we show how they are selected
and fitted.

The first parameter to deal with is the number of topics. We use the Stan-
ford Topic Modeling Toolbox4 to help train our topic model. We collect the
descriptions of mashups and services together to train topic model with number
of topics varying from 10 to 400. The best performance is reached when topic
number equals 300, which is later chosen for our further experiments.

Another important arguments in our model is the weight of each network
layer. It is hard to decide how much a layer should contribute to the final result
theoretically. We can try different combination of values under some constraints,
and get a best fit. To achieve this goal, we employ genetic algorithm to find
the answer under a linear constraints. Finally we get the best fit of (α, β, γ)
at (0.4, 0.1, 0.5) respectively for topic network, tag network, and service net-
work. This confirms the leading position of service layer in the recommendation
process, but others can also help improve the results.

(a) Recall (b) Precision

Fig. 1. Results of different approaches over various #recommendation

4 http://www.nlp.stanford.edu/software/tmt/tmt-0.4/.

http://www.nlp.stanford.edu/software/tmt/tmt-0.4/


672 J. Cao et al.

(a) Recall (b) Precision

Fig. 2. Results of service package recommendation over various #candidateSet and
#recommendation

(a) Recall (b) Precision

Fig. 3. Results when recommended services are new

5.3 Results and Discussion

Upon the selected best parameter values, we conducted experiments using each
of the methods. Figure 1 shows the recall for all the methods over varying rec-
ommendation size.

It can be seen in the figure that, the methods of textual similarity through
EditDistance performs worst, as expected, since it ignores many useful histor-
ical composition information. The three separate base approaches comes next,
with topic method performing the best. The model based on MRN outperforms
the comparative approaches to a great extent. Moreover, our service package
recommendation approach further improves the performance.

The service package recommendation result in Fig. 1 is a part of our final
experiments. We show the full results in Fig. 2, where various length of candidate
set is considered, as well as the size of recommendation set. It is unexpected
to see that given a recommendation number, the smaller candidate set size is,



Service Package Recommendation 673

the better performance we get. This suggests that we need to choose a proper
candidate set in practice.

It has been mentioned that our model is capable of recommending new ser-
vices. We conduct an experiment to verify this. For each test case, we remove
the effect of its services in the train set to make the services all new. The results
are shown in Fig. 3. It can be seen from the figure that the integrated model can
successfully recommend new services.

6 Conclusion and Future Work

In this paper, a multi-level relational network is applied to capture and model the
comprehensive relationships between topics, tags, and services. Specifically, we
propose the concept of service package recommendation, enabling to recommend
a set of complementary services, rather than a list of similar ones. Experiments
on realistic mashup data set have shown its effectiveness.

Acknowledgements. This work is partially supported by China NSF (Granted Num-
ber 61272438,61472253), Research Funds of Science and Technology Commission of
Shanghai Municipality (Granted Number 15411952502).

References

1. Oliveira, F.T., Murta, L., Werner, C., Mattoso, M.: Using provenance to improve
workflow design. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS, pp.
136–143. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89965-5 15

2. Maaradji, A., Hacid, H., Skraba, R., Vakali, A.: Social web mashups full completion
via frequent sequence mining. In: Proceedings - 2011 IEEE World Congress on
Services, SERVICES 2011, pp. 9–16 (2011)

3. Platzer, C., Dustdar, S.: A vector space search engine for Web services. In: Third
European Conference on Web Services (ECOWS 2005) (2005)

4. Li, C., Zhang, R., Huai, J., Sun, H.: A novel approach for API recommendation
in mashup development. In: 2014 IEEE International Conference on Web Services
(ICWS) (2014)

5. Goarany, K., Kulczycki, G., Blake, M.B.: Mining social tags to predict mashup
patterns. In: Proceedings of the 2nd International Workshop on Search and Mining
User-Generated Contents (SMUC 2010), pp. 71–78. ACM, New York (2010)

6. Cremonesi, P., Picozzi, M., Matera, M.: A comparison of recommender systems
for mashup composition. In: Proceedings of 2012 3rd International Workshop on
Recommendation Systems for Software Engineering, RSSE 2012, pp. 54–58 (2012)

7. Yao, L., Wang, X., Sheng, Q.Z., Ruan, W., Zhang, W.: Service recommendation
for mashup composition with implicit correlation regularization. In: 2015 IEEE
International Conference on Web Services (ICWS), pp. 217–224, June 2015

8. Zheng, Z., Lyu, M.R.: Component recommendation for cloud applications. In: Pro-
ceedings of RSSE, pp. 48–49 (2010)

9. Cao, B., Liu, J., Tang, M., Zheng, Z., Wang, G.: Mashup service recommenda-
tion based on user interest and social network. In: 2013 IEEE 20th International
Conference on Web Services (ICWS), pp. 99–106 (2013)

http://dx.doi.org/10.1007/978-3-540-89965-5_15


674 J. Cao et al.

10. Xu, W., Cao, J., Hu, L., Wang, J., Li, M.: A social-aware service recommendation
approach for mashup creation. In: 2013 IEEE 20th International Conference on
Web Services (ICWS), pp. 107–114 (2013)

11. Zhu, T., Harrington, P., Li, J., Tang, L.: Bundle recommendation in ecommerce.
In: Proceedings of the 37th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2014, pp. 657–666 (2014)

12. Gallo, G., Hammer, P., Simeone, B.: Quadratic knapsack problems. In: Padberg,
M.W. (ed.) Combinatorial Optimization, vol. 12, pp. 132–149. Springer, Heidelberg
(1980)


	Service Package Recommendation for Mashup Development Based on a Multi-level Relational Network
	1 Introduction
	2 Related Work
	3 The Multi-level Relational Network Model
	3.1 Service Network
	3.2 Tag Network
	3.3 Topic Network

	4 Service Package Recommendation
	4.1 Model Construction
	4.2 Solving QKP

	5 Experiments
	5.1 Dataset and Compareative Methods
	5.2 Model Training
	5.3 Results and Discussion

	6 Conclusion and Future Work
	References


