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Abstract—With the number of smartphone applications
(apps) growing explosively, it has a practical significance to
provide personalized app recommendations. In this paper, we
propose the GTRM, a new recommendation model which builds
the top-N app list by optimizing the metric Group-oriented
Mean Average Precision (GMAP). GMAP is an extension of
the traditional metric Mean Average Precision (MAP) and it
measures the precisions of top-N list in terms of the collective
positions of related items rather than the position of individual
item. Therefore, GTRM can recommend a more reasonable
top-N app list by avoiding overfitting problem. The details of
GMAP and GTRM are described. Extensive experiments on a
real-world app dataset demonstrate the effectiveness of GTRM,
and show that GTRM significantly outperforms the compared
methods.

Keywords-App Recommendation; Implicit Feedback; Collab-
orative Filtering; Learning to Rank; Metrics Optimization

I. INTRODUCTION

With the number of smartphone applications (apps) grow-

ing explosively (e.g., more than 1 million on Google Play

Store), it has been a serious problem for users to find

apps that they prefer, and thus has a practical significance

to provide personalized app recommendations. Currently,

keywords based search still dominates app selection process.

At the same time, many app markets have provided app

recommendation functions. However, they recommend apps

based on some simple rules, such as recommending the

most popular apps or the newest apps, which can not satisfy

individual’s requirement.

In order to recommend apps to users, we need to know

their preferences. The preference information can be learned

from users ratings to apps. Unfortunately, this information

is not available for most users. However, users’ historical

behaviors, (e.g., installation and downloading) can be eas-

ily collected nowadays by the smartphone manufacturers

or telecom companies. These behaviors can reflect users’

preference to apps to some degree. Therefore, we need to

build an app recommender system based on the implicit

feedback.

Rating prediction and ranking prediction are two common

strategies for recommender systems. The former tries to fill
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the missing rating values of users to items (item and app

are used interchangeably unless otherwise stated) while the

latter explores preferential relations among multiple items.

Currently, most real world recommender systems including

app recommender systems provide the services of top-N rec-

ommendation, which essentially involves solving a ranking

problem. Therefore, Learning to Rank (L2R) has been in-

tensively investigated and applied to recommender systems.

There are several measures (metrics) which are commonly

used to judge how well an algorithm does. The typical

metrics include MAP (mean average precision), MRR (mean

reciprocal rank) and NDCG (normalized discounted cumu-

lative gain). Often an L2R problem is reformulated as an

optimization problem w.r.t one of these metrics. As a list-

wise metric, MAP is the average of the precision value

obtained for the top-N items. It has good discrimination and

stability properties. Specifically, MAP has helpful feature

which ensures that mistakes in recommended items at the top

of the list carry a higher penalty than mistakes at the bottom

of the list. For this reason, some recommendation models

for implicit feedback domains are proposed by directly

optimizing MAP [1], [2].

However, the MAP-based optimization method is overly

concerned with obtaining high MAP values on history data,

which leads to overfitting problems. For example, the apps

that were not installed by many users tend to be ranked

in lower positions although the user may potentially prefer

these apps. On the contrary, some apps may be ranked in

higher positions on the list because these apps have been

ranked highly by quite a few people and are therefore

popular, however, they have not been chosen based on the

user’s personal interests.

In order to overcome this problem, we propose an ap-

proach that tries to rank a user’s potentially preferred apps

in higher positions by modelling the latent relationships

among apps. To achieve this goal, we optimize a more

general metric, named GMAP (Group-oriented MAP) rather

than MAP. GMAP inherits all the desirable properties of

MAP, i.e., top-heavy bias, high informativeness, elegant

probabilistic interpretation and a solid underlying theoret-

ical basis [3]. However, GMAP maintains the “cascade”

nature among item groups, rather than among individual
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items. In order to optimize GMAP, we propose GTRM

(the GMAP opTimization-based Recommendation Model,

a latent model that combines the item-item recommenda-

tion approach and the L2R optimization method. GTRM

improves the MAP-based methods since it tries to discover

and make use of apps’ relationships based on the user’s

inherent interests. In addition, GTRM can also accelerate the

L2R learning process since less ranking tasks are required

on app groups than on apps. The main contributions of this

paper are as follows:

• In order to overcome the problems of top-N app rec-

ommendations by optimizing MAP, we propose GMAP,

as an extension of MAP. GMAP is more fit to be an

optimization metric in app recommender systems.

• We design GTRM to optimize GMAP and propose

three strategies to produce top-N app recommendations.

• We perform extensive experiments which show that

GTRM outperforms other baselines on various eval-

uation metrics. In addition, GTRM also has a faster

learning rate.

The rest of this paper is organized as follows: the related

work is reviewed in Section II. In Section III, the optimiza-

tion metric GMAP is presented. In Section IV, GTRM is

described in detail. Section V details experimental evaluation

and finally, the conclusions and future work are presented

in Section VI.

II. RELATED WORK

Collaborative filtering (CF) is a fundamental technology

in recommender systems which can be divided into two

categories: memory-based and model-based. Memory-based

methods predict ratings by utilizing the relationships be-

tween items and users. Model-based methods try to learn

the latent factors behind the raw rating data and rating

predictions can be generated by applying learned factors.

Matrix factorization (MF) is a widely used model-based CF

algorithm [4]. In addition to the original version, different

extensions have been proposed, including SLIM [5], SPMF

[6] and HeteroMF [7]. Our GTRM also takes MF as an

underlying model. However, it does not directly predict the

relevance of an app to users, i.e., 1 or 0, but unfolds the

partial order relation between apps. Furthermore, GTRM

exploits CF similarity to cluster apps to groups.

L2R approaches learn user preferences through modelling

partial or total ordering relation among items. They can be

grouped into three approaches: pointwise, pairwise and list-

wise. The rating prediction methods are typically pointwise

ones. They output the relevance degree of each individual

item based on the features. Pairwise models, such as BPR

[8], maximize AUC metrics by utilizing the partial order

relations between items. Recently, approaches to directly

optimize listwise metrics (e.g., MRR, MAP and NDCG)

have been proposed, where the output is a ranked list

(or permutation) which is analogous to the task of Top-N

recommendation. For example, xCLiMF [9] is an optimizing

model based on Expected Reciprocal Rank (ERR) criterion,

aiming to guarantee the first item in the recommendation is

a higher relevant item while SVM-MAP [2] and TFMAP

[1], which are similar to ours, optimize MAP. However, our

model finds the best list by adjusting the positions of app

groups to maximize GMAP instead of MAP.

Some approaches have been proposed for smartphone ap-

plication recommendation over the last decade. For example,

Shi et al. [10] observed that the distribution of app dataset

has higher kurtosis than common datasets such as movie-

Lens, and thus used dimensionality reduction techniques

to extract meaningful features from apps and then applied

memory-based techniques to generate recommendations in

this reduced space. Lin et al. [11] used a semi-supervised

topic model to construct a representation of an apps version,

and then discriminated the topics based on genre information

to generate a version-sensitive ranked list. To relieve the

cold-start problem in app recommendation, the work in [12]

leverages the information on app followers available on

Twitter and introduces Latent Dirichlet Allocation (LDA)

to generate the latent user groups, and the probability that

represents a users interest in an app is computed through the

marginalization over these groups. However, these methods

are content-based which need extra information besides user

historical data. By contrast, KRPMF [13], which depends

only on the information of users app installation as our

GTRM does, incorporates the kernel information of users

and apps w.r.t app-categorical information into conventional

PMF, to capture the latent correlations among the latent

factors. However, it is a pointwise approach and thus can

not be used for top-N recommendation directly.

III. GROUP ORIENTED MAP (GMAP)

MAP is an intuitive and popular metric to measure the

average of the precision value obtained for the top-N items.

However, to learn ranking latent factors for personalized

recommendation by optimizing MAP leads to overfitting

problems, as mentioned in Section I. Therefore, we propose

a new optimization metric, GMAP.

A. Notations and Definitions

Suppose the implicit feedback data is from N users to M
apps, and all apps are clustered to K groups according to

some criteria, and ith group has ki apps, i = 1, 2, ...,K.

The vector Xui ∈ Rki for user u records ki entries which

are denoted with xuil: (1) xuil = 1 indicates that user u has

installed app l (l = 1, 2, ..., ki) of group i. This shows that

this user should have preferences for this group. (2) xuil = 0
indicates the absence of an installation by user u to app l
and thus app l makes no contribution to user u’s preference

for this group. However, the total preference of user u to app

l can be estimated according to the ratio of nonzero entries

in Xui.
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Then, the definition of Group-oriented Average Precision

(GMAP) of a ranked list for user u is as follows:

GMAPu =
1∑K

i=1
I(
∑ki

l=1 xuil)

K∑
i=1

1

Rui
I(

ki∑
l=1

xuil) ·

K∑
j=1

1

kj

kj∑
l=1

xujl · I(Ruj ≤ Rui) (1)

where Rui is the position of app group i in the current ranked

list for user u, e.g., Rui = 1 denotes app group i is ranked

in the highest position. I(x) is a binary indicator function,

i.e., it is equal to 1 if x is true, otherwise 0. For notational

convenience in the rest of this paper, we substitute some

terms in Eq.(1) as shown as follows:

Zu =
K∑
i=1

I(

ki∑
l=1

xuil) (2)

yuj =
1

kj

kj∑
l=1

xujl (3)

Iui = I(

ki∑
l=1

xuil) = I(ki · yui) (4)

where Zu is a substitution of the first two sum terms

in Eq.(1). In fact, it is a constant normalizing coefficient

counting the number of relevant app groups of user u, and

yuj represents the relevance degree of app group j to user

u by calculating the ratio of relevant apps in that group.

Different from yui, Iui only indicates whether user u is

interested in app group i, rather than how much the user

likes it, i.e., Iui = 1 represents that this user is interested in

the app group, otherwise he is not interested in.

GMAP is the average of GMAPu over all the users. Thus,

it is defined based on GMAPu:

GMAP =
1

N

N∑
u=1

GMAPu

=
1

N

N∑
u=1

1

Zu

K∑
i=1

Iui
Rui

K∑
j=1

yujI(Ruj ≤ Rui) (5)

B. GMAP-based Method vs. MAP-based Method

The formulation of GMAP in Eq.(5) is similar to MAP,

except in two aspects: (1) the ranking ontologies have

been changed from app to app group, and (2) the relevant

measurement is no longer binary , i.e., 1 or 0, but a ratio

of relevant apps in a group, similar to graded relevance.

However, this “graded relevance” varies from a traditional

pseudo rating based on the frequency of the same app.

It is more informative to represent the relevance of the

group to users. Therefore, GMAP maintains the desirable

qualities of MAP while overcoming the overfitting problem

of MAP. GMAP-based methods reduce the concern about

the precisions of the training data in order to pursue gains

in precision on the test data, and thus it more likely measures

average precision from an overall perspective to give more

chance to rank unknown apps.

An interesting finding is, currently, some app markets

provide different areas to show recommended apps. Different

areas have different degrees of attractiveness but apps in the

same area have the same attractiveness. The list provided by

GMAP-based methods happens to be fit for this scenario.

However, if we need a top-N recommendation, it can be

derived based on the result from GMAP-based methods.

Therefore, GMAP is an extension of MAP.

IV. A TOP-N RECOMMENDATION MODEL FOR

SMARTPHONE APPLICATIONS (GTRM)

In this section, we show in detail how to employ GMAP

as an objective function to be optimized by GTRM. GTRM

involves three steps: (1) app groups are discovered and

organized, (2) app groups are ranked, and (3) apps are

recommended based on the ranked app groups.

A. Smooth GMAP

GMAP is not smooth, which is caused by two terms in its

definition, i.e., 1/Rui and I(Ruj ≤ Rui). These two terms

show that GMAP depends on the ranking of the relevant

app groups with respect to the user. This unsmoothness

renders standard optimization methods unable to solve this

optimization problem. Thus, we firstly smooth GMAP to

an approximated version based on the core ideas borrowed

from [1]. Then, the partial ordering relation between apps is

represented by a real-value function as follows:

Ruj ≤ Rui ⇒ fuji(Θ) (6)

where Θ represents the parameter vector specific to the

arbitrary model. Here, we use the matrix factorization tech-

nique to learn two latent factor matrices, U ∈ RN×D and

V ∈ RK×D, which represent user and app groups with

respect to D-dimension latent factors, respectively. Thus in

the rest of the paper, Θ = (U, V ). This pairwise relation can

be depicted by a point-by-point computation as follows:

fuji(Θ) = fuj(Θ)− fui(Θ) = 〈Uu, Vj〉 − 〈Uu, Vi〉 (7)

Note that for notational convenience, we will omit Θ in the

rest of this paper. The app groups are ranked in descending

order, according to their predicted relevance degrees to a

target user, e.g., fui for user u. Then, we can utilize the

sigmoid function g(x) = 1/(1 + e−k(x−c)) to approximate

the term of the binary indicator as:

I(Ruj ≤ Rui)⇒ g(fuj − fui) (8)

Furthermore, the term of 1/Rui can also be approximated

by g(x) as shown as follows:

1

Rui
⇒ g(fui) (9)
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In order to simplify the analysis and computation process,

suppose c = 0 and k = 1 in g(x). Finally, we obtain a

smoothed version of GMAP by substituting the approxima-

tions introduced in Eq.(8) and Eq.(9) into Eq.(5), as shown

as follows:

GMAP ≈ 1

N

N∑
u=1

1

Zu

K∑
i=1

Iuig(fui)
K∑
j=1

yujg(fu(j−i))

(10)

where fu(j−i) := fuj−fui. The coefficient 1
N and 1

Zu
can be

dropped, because it is independent of latent factors, and thus

has no influence on the optimization of GMAP. Therefore,

the final objective function of GTRM is shown as follows:

L(U, V ) =

N∑
u=1

K∑
i=1

Iuig(fui)
K∑
j=1

yujg(fu(j−i))

−λ

2
(||U ||2 + ||V ||2) (11)

where ||U || and ||V || are Frobenius norms of U and V
to avoid overfitting, and λ is the parameter controlling the

magnitude of regularization.

B. Optimization Procedure

Now, we can use gradient ascent to optimize L(U, V ) in

Eq.(11) with respect to the model parameters U and V . Note

that the gradient of the objective function for each user is

derived independently of all other users. But for each app

group, the gradient is derived based on one user in each

iteration, since the relevance of the app group is dependent

on the user-app group pair. Then, the gradient of L(Uu, V )
and L(U, Vi) can be computed as follows:

∂L
∂Uu

=
K∑
i=1

Iui

(
g′(fui)

K∑
j=1

yujg(fu(j−i)) · Vi

+ g(fui)
K∑
j=1

yujg
′(fu(j−i)) · (Vj − Vi)

)
− λUu

(12)

∂L
∂Vi

=
(
Iuig

′(fui)
K∑
j=1

yujg(fu(j−i)) +
K∑
j=1

[Iujyuig(fuj)

− Iuiyujg(fui)]g
′(fu(j−i))

)
Uu − λVi (13)

The model parameters Θ = (U, V ) are updated with

a learning rate η based on the most common stochastic

gradient ascent (SGA) algorithm:

Θ← Θ+ η
∂L
∂Θ

(14)

The time complexity of updating the latent factors for

each user based on Eq.(12) is O(|Iu|2D), where |Iu| denotes

the number of relevant app groups of user u. Taking into

account all the N users, the total complexity of updating

matrix U is O(N |Ī|2D) in each iteration, and the |Ī| is

the average number of relevant app groups across all users.

Based on Eq.(13), the time complexity of updating the latent

factors with respect to all relevant app groups for a given

user u is also O(|Iu|2D), since each relevant app group is

computed to every relevant app group ranked higher than it.

Similarly, in one iteration, the total complexity of updating

matrix V across all users is the same as updating matrix U .

Thus, our model finally takes O(N |Ī|2D) time to update

the parameters in each iteration. Note that the term (N |Ī|)
represents the number of all relevant app groups across all

users. We substitute |R| for (N |Ī|), and |R| 	 |Ī|, D.

This means the time complexity in each iteration can be

regarded as O(|R|). This is a linear complexity with respect

to the number of all relevant ranking ontologies on the given

dataset. As previously mentioned, the ranking ontology has

been transferred from the app to a higher space, i.e., the app

group. Then, the |R| has been greatly decreased compared

to individual app-based ranking methods, e.g., TFMAP.

C. Neighbour Selection

The key issue to integrate the item-item based recom-

mendation idea to our model is the neighbour selection

for apps. In fact, these unfamiliar apps are brought to

higher positions by their relevant apps which have installed

by target user. Thus, it is important to devise a better

strategy for neighbour selection to improve the performance

of GTRM. In this paper, we use two similarity functions

to cluster apps to groups, which are attribute similarity

and CF similarity respectively. The former is constructed

using side information, for example, labels or classifications

of apps. However, it is not always possible to have such

information for the dataset, in which case we measure the

distance between apps based on collaborative relation. Then,

the similarity is calculated as follows:

Slk =
|N(l) ∩N(k)|√|N(l)||N(k)| (15)

where |N(l)| denotes the number of users who once installed

app l, or the number of attributes that app l has; |N(l) ∩
N(k)| denotes the number of users who both installed app l
and k, or the number of attributes that both app l and k have,

respectively in CF-based and attribute-based similarity.

Many clustering algorithms can be used in this framework,

such as partitional algorithms and hierarchical algorithms.

Note that the size of each cluster/app group should not be

too large, since the size of the recommendation windows is

limited and it is not appropriate to recommend apps to a

target user only based on an individual app group. Thus, to

simplify the analysis and control all groups with the same

size by the variable S, we propose a one-iteration greedy

clustering method. In this paper, to cluster a new app group,

we select S−1 most similar apps to a ungrouped app over all
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Algorithm 1 One-iteration cluster: NeighbourSelection

Input: All apps with their attributes or interacted user set,

and the size of group S.

Output: Group list L
Initialize i = 1
repeat

random select an ungrouped app l
Li ← {l ∧ S − 1 most similar apps to l in similarity

network }
delete all apps k ∈ Li from similarity network

i← i+ 1
until All apps have been grouped.

return L

other ungrouped apps in each step, then remove all these S
apps from the similarity network until all apps are grouped.

It will take a total of O(nM2/2S + nM/2) = O(KMn)
times. Note that GMAP@S and GTRM@S denote GMAP

and GTRM based on S-size app groups, respectively. The

neighbour selection method is summarized in Algorithm 1,

and the entire learning algorithm of GTRM is illustrated in

Algorithm 2.

Algorithm 2 GTRM

Input: User-app pairs from training data, app group list L
from Algo.1, app group size S, regularization term λ,

learning rate η, and iteration times itermax.

Output: The learned latent factors U, V .

Initialize U (0), V (0) with random values, and t=0;

for each user u and each group i do
for l = 1 to S do

Xuil = 1 if app Lil has been installed by user u,

otherwise Xuil = 0
end for

end for
repeat

for u = 1 to N do
U

(t+1)
u ← U

(t)
u + η ∂L

∂U
(t)
u

based on Eq.(12)

for i ∈ {L′|the app groups interested by user u}
do
V

(t+1)
i ← V

(t)
i + η ∂L

∂V
(t)
i

based on Eq.(13)

end for
end for
t← t+ 1

until t ≥itermax
return U = U (t), V = V (t)

D. Top-N Recommendation List Construction

The outputs of GMAP-based methods contain the rele-

vance degrees of all the app groups associated with a user.

They can be applied to the scenario as previously discussed.

App

App
Group

User

Figure 1. The user preferences are represented by two layers: the app
group-wise and the app-wise layer

However, we can easily generate top-N recommendation app

lists from these original outputs. Although the relevance

degree of each app of the same group is equal, our model is

able to make use of side information (e.g., the popularity)

to rank these apps inside each app group. Moreover, we can

produce the final top-N app lists through integrating two

different rank frameworks as shown in Fig.1. The integration

strategy can discover relevant apps from both the training

set and the test set. At the same time, it can also reduce the

influence of misoperation, which is a significant challenge

for recommender systems using implicit feedback. In this

paper, we propose three strategies for producing top-N app

list, namely GTRM-All, GTRM-One and GTRM-Weight.

GTRM-All organizes all apps from top ranked app groups

into a list in a cascading way. Then, for each app of the

same app group, the ranks are based on the app popularity.

GTRM-One gets the most popular app from each top ranked

app group and organizes these into a list. In this case, the

order of top-N apps inherits the order of app groups. GTRM-

Weight returns the top-N recommendation list based on a

synthetic utility function, which is defined based on the

NDCG metric. The function is shown as follows:

ruil = α ∗ 1

log(Rui + 1)
+ (1− α) ∗ 1

log(Pul + 1)
(16)

where ruil represents the final relevance degree of app l of

app group i for user u, Rui and Pul are the positions of

app group i and of app l in two different rank frameworks,

respectively, and α ∈ [0, 1] is the parameter controlling the

weight between these two ranks. To ensure the unity of an

experienced target, we still employ the app popularity ranks

as the baseline individual app ranks.

V. EXPERIMENTAL EVALUATION

We compare our methods with some state-of-the-art al-

ternative approaches to investigate the performance from

multiple perspectives. We also test the influence of different

parameter settings followed by a discussion.

A. Experiment Setting

1) Dataset: Our original dataset contains 2,000,000 in-

stallations records from 19,859 users and 3,907 apps. For

the purpose of our experiments, we sample users by the
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number of their installation apps and users with more than

25 installed apps are retained in the dataset. Then the dataset

for experiments contains 4670 users and 2,259 apps with

470,000 installations records in total. The sparsity of the

user-app matrix in this dataset is 95.54%. Besides, we

extract categorical labels of the apps from an online app

store, www.wandoujia.com, and then the attribute similarity

is based on 226 categories for mobile apps.

2) Experimental Approach: We separate the dataset into

a training set and a test set by randomly removing a certain

number of records from each user’s historical data. For

example, “Given 5” denotes that for each user, we randomly

select five records from original historical records to form

test set, and use the remaining data to form training set.

We use two evaluation metrics, MAP and precision, to

measure the recommendation performance. Precision is a

very popular metric for evaluating recommender systems. It

reflects the ratio of relevant apps in the ranked list given a

truncated position, e.g., P@5 denotes the ratio of relevant

apps in the first five apps of the ranked list. MAP is the

listwise metric which has been introduced above.

To investigate the performance of GTRM, we implement

four comparative methods, namely iPOP, ICF, wALS-ITEM

[14] and TFMAP along with three GTRM methods, GTRM-

All, GTRM-One and GTRM-Weight. The iPOP recommends

apps according to app popularity. ICF is a traditional item-

based CF method using Pearson correlation-based similarity.

wALS-ITEM is a weighted matrix factorization method us-

ing the alternative least square (ALS) learning method. The

apps’ weights are inversely proportional to the popularity of

the apps. TFMAP is an L2R method using the MAP metric

as the objective function.

All the parameters of each model are set to their optimal

values in the experiments, i.e., the number of features in

TFMAP, wALS-ITEM and GTRM is 10, and for ICF, we

set the number of nearest neighbours to 30. The remaining

parameters are also empirically tuned, such as the α = 0.9
for GTRM-Weight, the size of the app group is set to 3,

the regularization parameter λ = 0.1, and the learning rate

η = 0.002. In addition, we utilize 5-fold cross validation on

the datasets.

As Fig.2 shows, GTRM-CF (i.e., with CF similarity)

performs better than GTRM-ATTR (i.e., with attribute simi-

larity) no matter which method of top-N recommendation

list construction we chose. This is reasonable since CF

similarity possesses a higher dimension vector, depicting

the latent properties of apps compared to the attribute

dimension vector on these two datasets. Thus, without loss

of generality, we select GTRM-CF to represent GTRMs in

the following experiments unless otherwise stated.

B. Effectiveness of the Learning Process

We first validate the effectiveness of the GTRM learning

process. We measure the GMAP values on both the training

(a) MAP (b) Precision

Figure 2. MAP and precision of three top-N lists based on different
strategies

and the test sets across the iterations, and the results are

shown in Fig.3a. Then, we can observe that both GMAP

measures quickly improve towards an optimal value with

only a few iterations, i.e., 10. This proves the effectiveness

of our learning process. Furthermore, we present an exper-

imental study that examines the change of the position of

the relevant app groups, i.e., the maximal and minimal rank

of relevant app groups in the ordered list. Both of them are

the average values across all the users, and as Fig.3b shows,

they decrease with each iteration as the model is gradually

optimized. In addition, the average minimal rank of relevant

app groups is close to one. These observations also provide

empirical evidence that the learning process of GTRM is

efficient.

C. Performance Comparison

Now, we measure MAP and precision values on the

test set, based on the different number of top apps in

the recommendation list, such as MAP@5 and P@5. The

results are shown in Table I, where all GTRM methods

achieve better precision and MAP performance, In particular,

the GTRM-Weight obtains the best results of all methods

with respect to precision and MAP, then GTRM-All and

GTRM-One, followed by TFMAP. TFMAP achieves higher

values of precision and MAP than the remaining methods,

i.e., iPOP, wALS-ITEM and ICF. This indicates that the

L2R approach is effective for Top-N recommendation. In

addition, an interesting observation is that GTRM-All is

better than GTRM-One in relation to the the performance

of precision. However, in relation to the performance of

MAP, GTRM-One is better than GTRM-All. This is because

GTRM-One can discard both relevant apps and irrelevant

apps in the top app groups. The reduction of relevant apps

on the test set may not reduce the value of MAP, but it

will reduce the value of precision. The results also show

that the performance of all methods becomes better when

the number of relevant apps to be tested increases from 5

to 20. The reason for this is that more relevant apps in the

test data can better cover the preference of users.
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Table I
MAP AND PRECISION PERFORMANCE OF GTRM@3 COMPARED TO BASELINES

Metric Methods
Given 5 Given 10 Given 20

@1 @3 @5 @1 @3 @5 @1 @3 @5

MAP

iPoP 0.2643 0.2701 0.2604 0.4359 0.4792 0.4749 0.5259 0.5892 0.5802
ICF 0.3019 0.3289 0.3089 0.4989 0.5532 0.5572 0.6041 0.6203 0.6213
wALS-ITEM 0.3054 0.4033 0.4034 0.5089 0.5732 0.5728 0.6816 0.7004 0.7212
TFMAP 0.3447 0.4025 0.4172 0.5396 0.6122 0.6075 0.7023 0.7335 0.7575
GTRM-One 0.3646 0.4582 0.4553 0.5443 0.6364 0.6325 0.7341 0.7352 0.7702
GTRM-All 0.3554 0.4463 0.4524 0.5374 0.6303 0.6291 0.7253 0.7217 0.7675
GTRM-Weight 0.3694 0.4593 0.4564 0.5574 0.6423 0.6486 0.7348 0.7462 0.7726

Precision

iPoP 0.2643 0.1902 0.1342 0.4359 0.2792 0.2056 0.5259 0.4692 0.3149
ICF 0.3089 0.2032 0.1532 0.4389 0.2832 0.2073 0.5041 0.5003 0.3942
wALS-ITEM 0.3108 0.2202 0.1701 0.4589 0.3132 0.2445 0.5216 0.5104 0.4442
TFMAP 0.3404 0.2148 0.1653 0.5482 0.3769 0.2998 0.5681 0.5261 0.4501
GTRM-One 0.3618 0.2441 0.1780 0.5489 0.3933 0.3075 0.5686 0.5401 0.4510
GTRM-All 0.3684 0.2505 0.1833 0.5439 0.3940 0.3246 0.5686 0.5418 0.4519
GTRM-Weight 0.3690 0.2542 0.1875 0.5525 0.3983 0.3374 0.5875 0.5731 0.4723

D. Comparison with TFMAP

Since TFMAP is also based on L2R, we compare GTRMs

with TFMAP in more detail. That is, we compare changes

in the MAP performance with the iterations of the learning

process. Here, MAP is measured on both the training and

the test sets across the iterations, and the size of the app

group is still set to 3 for GTRMs. The results of GTRMs

are shown in Fig.3c along with the results of TFMAP. It

can be observed that the MAP measures gradually increase

towards an optimal value with only a few iterations, e.g.,

5 for TFMAP and GTRM-Weight. After the turning points,

the MAP measures start to decrease. This indicates GTRMs

and TFMAP are both effective as long as the number of

iterations are controlled to avoid model overfitting. Note

that the MAP measure of TFMAP increases sharply on the

training data, but is almost flat on the test data. This property

is also shown in the experiment from [1]. It can be found that

the steady performance of GTRMs, including GTRM-All,

GTRM-One and GTRM-Weight, is better than TFMAP on

the test set, though the TFMAP obtains the best performance

on the training set. This justifies our opinion that GMAP-

based methods are more effective compared to MAP-based

methods on the ranking recommendation problem. As shown

in Fig.3d, GTRMs also learn faster than TFMAP and the

time decreases when the size of the groups increases for

GTRMs.

E. Performance on New Apps

GTRM can recommend new apps while all other compar-

ative methods cannot. As this new app cannot be clustered

in the right app group based on CF similarity, we employ

attribute similarity in this experiment. We randomly elimi-

nate one app from the training set. This means all actions on

this app are removed. Thus, this app can be viewed as a new

app to the user. After training the model, the performance of

the model is evaluated on the test data. In order to calculate

precision, we only evaluate the performance with users who

have interaction records with this new app in the test set.

Then, we examine GTRM-All and GTRM-Weight since both

of them always retain the new app in the recommendation

lists, while GTRM-One does not. The results are shown in

Fig.3e, indicating GTRM is able to recommend the new

apps.

F. Influence of Group Size

The final experiment investigates the influence of the size

of app groups. To simplify the analysis, we control all

groups of the same size by the variable S, as discussed

in Section IV-C. Then, we show the MAP measured on the

test data across the S, as shown in Fig.3f. We observe that

the MAPs of all GTRMs firstly increase towards the optimal

value, then after the turning points, i.e., 3, the MAP lines

decline linearly. This indicates that the size of both GTRMs

should not be too large for the reason discussed in Section

IV-C. It can also be seen that there is not much difference

between our methods and TFMAP when S = 1. In fact, our

model can be viewed as a generalized form of TFMAP as

mentioned. Thus, when the individual app is considered as

the group owning only one element, GTRM demonstrates a

similar performance to TFMAP.

VI. CONCLUSION AND FUTURE WORK

In this paper, we firstly proposed a new optimization

metric, GMAP, which is a general form of the MAP metric.

Then, we optimized GMAP to learn the latent factors with

respect to users and app groups. Furthermore, in order to

construct app groups, we proposed a one-iteration greedy

algorithm to cluster apps and then, methods to derive the

top-N app recommendation list were suggested. Finally, the

extensive experiments proved that our algorithm is effective

and outperforms the others on various evaluation metrics.

The model can still be improved in different aspects in the

future, such as the apps can be clustered by applying more

advanced methods. In particular, in this paper, in order to

simplify the model, we have assumed that all groups share
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(a) The GMAP values (b) The average maximal and minimal ranks (c) The MAP values

(d) The average time across the size of app groups (e) The precision for new app recommendation (f) The MAP values across the size of app groups

Figure 3. The results of the experiments

the same size. It would be an interesting study to cluster

apps to groups of different sizes.
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