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Abstract. Pointwise prediction and Learning to Rank (L2R) are both
widely used in recommender systems. Currently, these two types of
approaches are often considered independently, and most existing efforts
utilize them separately. Unfortunately, pointwise prediction tends to
overfit the training data while L2R is more prone to higher variance, and
both of them suffer one-class problems using implicit feedback. Therefore,
we propose a new framework called CPL, where pointwise prediction and
L2R are inherently combined to discriminate user preferences on unob-
served items, to improve the performance of top-N recommendations.
To verify the effectiveness of CPL, an instantiation of CPL, which is
named CPLmg, is introduced. CPLmg is based on two components, i.e.,
FSLIM (Factorized Sparse LInear Method) and GAPfm (Graded Aver-
age Precision factor model), to perform pointwise prediction and L2R,
respectively. The low-rank users’ and item’s latent factor matrices act
as a bridge between FSLIM and GAPfm. Moreover, FSLIM dynamically
rates an unobserved item for a user based on its similarity with observed
items. These pseudo ratings are further utilized with a confidence score
to rank items in GAPfm. Extensive experiments on two datasets show
that CPLmg significantly outperforms the baselines.

Keywords: Recommender system · Implicit feedback · Collaborative
filtering · Learning to Rank · Metrics optimization

1 Introduction

Recommender systems (RSs) have been widely adopted by many online ser-
vices, since they are able to solve the information overload problem as well as
facilitate interaction between users and systems. Most RSs infer users’ interests
through users’ historical behaviors, either represented in explicit form or implicit
form. Explicit feedback such as rating, which is given by users, can indicate a
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user’s interest in a particular product. However, this explicit feedback is not
always available in practical systems. On the contrary, implicit feedback, such
as users’ browsing history, or even mouse movements, can be easily obtained
from the system and do not burden the users. This information can also reflect
users’ preferences, although in an indirect way. Consequently, recommendation
approaches based on implicit feedback are becoming more widely used [1].

Pointwise prediction and learning to rank (L2R) are two representative genres
of the approaches for RSs. Pointwise prediction tries to estimate the value of an
item to a user based on historical data with the aim of minimizing prediction
errors. It is straightforward and effective when users’ historical data is organized
in rating forms. In domains where only implicit feedback is available, there are
also two definitional levels, i.e., 1 for observed examples and 0 for missing ones,
which can reflect the connection strength between a user and an item to some
degree [2]. However, pointwise prediction models easily lead to large bias, i.e.,
overfitting of training data, since they are confined to being finely tuned to each
value of individual examples, even these examples are noises. On the other hand,
L2R methods explore the preferential relations among multiple items, i.e., the
relation that a user prefers item i over item j, and consider the entire ranking list
as a target for optimization. In contrast to pointwise prediction, L2R methods
may cause high variances since they are not sensitive to small changes in the
estimated value of each individual examples unless these examples are compared
to the other ones. To balance variance and bias, existing approaches usually add
regularization terms to target functions.

In this paper, we explore a new framework, CPL (a Combined framework of
Pointwise prediction and L2R), which tries to balance bias and variance not only
by regularization but also based on the inherent features of pointwise prediction
and L2R. The ultimate goal of CPL is to find a balance between predicting an
accurate value for each example (which is the goal of pointwise methods) and
keeping the correct preferential relations between items (which is the goal of L2R
methods). To verify the effectiveness of CPL, we choose SLIM [9] which is one
of the pointwise prediction methods, and GAPfm [14] which is one of the L2R
methods, as the two components to implement CPL. SLIM and GAPfm both
have been demonstrated to have a stronger performance than other state-of-the-
art approaches to top-N recommendations. SLIM utilizes the intuition of item-
based K-nearest neighborhood (ItemKNN) collaborative filtering and makes use
of the learning process of matrix factorization (MF) techniques to estimate the
coefficients between every two items. The estimated coefficients are analogous
to item similarities in the traditional ItemKNN method, but they are learned
from observed data instead of being calculated based on items’ attribute vectors.
GAPfm, which addresses the top-N recommendation problem in domains with
grade relevance data, takes the Graded Average Precision (GAP) metric as the
extreme optimization objective function. However, we would like to utilize the
highly discriminative trait of GAP to dynamically mine potential positive exam-
ples and to avoid the trap of suppression of preferences for items about which
the user is unaware [13,17].
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To combine SLIM and GAPfm in a better way, we first revise their original
versions. Then, we combine the new versions into CPLmg, which is an imple-
mentation of CPL. Specifically, we improve the SLIM to be a more general factor
model, namely FSLIM. FSLIM inherits all the desirable characteristics of SLIM
and the difference is that FSLIM constructs a dense representation both for
users and items, which can improve the recommendation performance [6]. Then,
the low-rank users’ and item’s latent factor matrices act as a bridge between
FSLIM and GAPfm, so that the learned dense representation can be transferred
to each other. Moreover, FSLIM dynamically rates unobserved items for a user
based on the learned item similarities. These pseudo ratings are further utilized
in GAPfm, and the confidence score of a pseudo rating to be a threshold, which
separates unknown items to a positive example or to a negative example, is also
updated dynamically in every training round. Thus, the combination of FSLIM
and GAPfm results in the considerably improved learning accuracy of GPLmg.

The main contributions of this paper are as follows: (1) We introduce a
new framework CPL to combine pointwise prediction and L2R methods to
address the top-N recommendation problem. (2) We propose an implementation
of CPLmg for CPL. In CPLmg, we combine the FSLIM and GAPfm models.
FSLIM is extended from SLIM. Moreover, strategies are designed to better inte-
grate FSLIM and GAPfm. (3) Extensive experiments, which show that CPLmg
outperforms other baselines on various evaluation metrics, are conducted.

2 Related Work

Our proposed model, which is based on a combination of pointwise prediction and
learning to ranking, addresses the top-N recommendation problem with implicit
feedback. Therefore, it is related to state-of-the-art top-N recommendation tech-
nologies, including matrix factorization (MF) methods and L2R approaches.

MF is one of the most popular model-based collaborative filtering (CF) meth-
ods. It learns latent factor representations with respect to users and items, and
models user preferences as the dot product of latent factor vectors. SLIM [9]
is a particular case of MF. It directly learns a similarity matrix from the data
and thus becomes a novel learning model. To address the quadratic computation
problem of SLIM, a factorized similarity model FISM [5] is proposed. FISM fac-
torizes the similarity matrix into two low-rank matrices. However, both SLIM
and FISM do not produce a user-specific latent factor matrix. Thus, LRec [13],
which is interpreted as a linear classification model for each user, is proposed to
overcome this limitation. Currently, some work has explored the combination of
MF and deep learning for recommendations. For instance, NeuMF [4] is a neural
network-based CF method, and it is essentially a fusion of generalized matrix
factorization and multi-layer perceptron.

L2R becomes a hot research area, since it directly models partial ordering
relations between items, which happens to be consistent with top-N recommen-
dation tasks. One key element of L2R methods is the objective measures, defined
as either ranking error functions or optimization metrics. Thus, based on dif-
ferent objective measures, many L2R methods have been proposed. BPR [11]
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maximizes AUC metrics by utilizing the partial order relations between items.
xCLiMF [15] is an L2R method based on expected reciprocal rank (ERR). More-
over, TFMAP [16] optimizes MAP metric directly. To alleviate the overfitting
problem of L2R, GTRM [17] optimizes the group-oriented mean average preci-
sion (GMAP) which considers the similarities between items, and PRIGP [10]
integrates item-based pairwise preferences and item group-based pairwise pref-
erences into the framework based on BPR-OPT derived from BPR.

However, the above-mentioned approaches only utilize regularization terms
to balance bias and variance, and none of them combine pointwise prediction
and L2R for top-N recommendations.

3 Preliminaries

3.1 Definitions and Notations

Assume that the implicit feedback data is from M users’ behaviors on N items,
and we use the symbol u to index a user, the symbol i and j to index items,
and the symbol k to index a latent factor. The set of all users and items are rep-
resented by U = {1, 2, . . . , u, . . . ,M} and I = {1, 2, . . . , i, . . . , N}, respectively.
The matrices P ∈RM×K and Q ∈RN×K are latent factor matrices related to
users and items, respectively. The entire set of users’ historical feedback such as
purchases/clicking are represented by a user-item interaction matrix A ∈ R

M×N ,
in which each entry is represented by Aui ∈ {0, 1}, where Aui = 1 means user u
has at some point interacted with item i (observed items), otherwise the entry
is marked as 0 (unobserved items).

In the rest of the paper, vectors and matrices are both denoted by upper
bold symbols, where the symbol with no subscript represents the matrix itself.
The symbol with one subscript (e.g., Pu) represents a vector extracted from its
matrix by the row/column subscript index, and the symbol with two subscripts
(e.g., Puk) represents the entry. A predicted value is denoted by the symbol with
a wide tilde head (e.g., ˜Aui). Unless stated differently, all vectors are column
vectors by default, but the vectors with the transposed subscript � are row
vectors (e.g., P�

u denotes the u-th row of P).

3.2 SLIM

A parse linear method SLIM [9] has demonstrated very good performance for
top-N recommendations. Different from traditional similarity models that cal-
culate similarities based on attributes according to certain criteria, SLIM learns
the item similarities from the data directly. That is, SLIM estimates a sparse
aggregation coefficient matrix W ∈ R

N×N , in which each entry Wij can be
viewed as the similarity between items i and j. Then the recommendation score
from user u to an unobserved item i is computed as a sparse aggregation of all
the observed items of the user, as follows:

˜Aui = A�
u Wi (1)
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where A�
u is the row vector extracted from A by the row/user index u, and Wi

is a column vector, which represents the i-th column vector of matrix W. Then,
SLIM estimates/learns the W by solving the following optimization problem:

minimize
W

1
2
||A − AW||2F +

β

2
||W||2F + λ||W||1

subject to W ≥ 0
diag(W) = 0 (2)

Here, ||W||1 is the entry-wise �1-norm of W which encourages sparsity, and ‖•‖F

is the matrix Frobenius norm. The constraint diag(W) = 0 prevents learned
item similarities from being affected by the item itself. As for the nonnegativity
constraint, [7] showed that it could be ignored without affecting performance.

3.3 GAPfm

GAPfm [14] is a listwise L2R method which directly optimizes a smoothed
approximation of GAP metric [12]. GAP generalizes average precision (AP) to
the case of multi-graded relevance, and inherits the most important properties
of AP metric to guarantee that mistakes in recommended items at the top of the
list carry a higher penalty than mistakes at the bottom of the list. The definition
of GAP is as follows:

GAPu =
1

Zu

N
∑

i=1

Iui

Rui

N
∑

j=1

IujI(Ruj ≤ Rui)

(I(yui < yuj)
yui
∑

l=1

δl + I(yuj ≤ yui)
yuj
∑

l=1

δl) (3)

where Rui denotes the ranked position of item i for user u, e.g., Rui = 1 denotes
the item is ranked in the first/highest position. Iui = 1 (Iui ∈ {0, 1}) denotes
the item is a positive example, otherwise it is a negative/missing example. yui

denotes the grade of item i to user u. I(x) is a binary indicator function, i.e.,
it is equal to 1 if x is true, otherwise 0. Zu =

∑ymax

l=1 nul

∑l
c=1 δc is a constant

normalizing coefficient for user u, where nul denotes the number of items rated
with grade l by user u, and δl denotes the thresholding probability that the user
sets as a threshold of relevance at grade l, i.e., regarding items with grades equal
or larger than l as relevant ones, and the others as irrelevant ones.

δl =

⎧

⎨

⎩

2l − 1
2ymax

, ymax > 1

1, ymax = 1
(4)

where [1, ymax] is the scale of ratings. Then, with a small manipulation, Eq. (3)
can be smoothed to be an optimization objective function with respect to the
learned parameters, i.e., P and Q, the details are given in the following sections.



264 N. Zhu and J. Cao

4 Proposed Methodology

In this section, we introduce two components of CPL: (1) Factorized SLIM
(FSLIM), and (2) GAPfm with sampling strategy. Then, we show in detail how
to combine FSLIM and GAPfm to implement CPL.

4.1 Factorized SLIM (FSLIM)

Our proposed Factorized SLIM is a new version of SLIM that incorporates ideas
from traditional matrix factorization (MF) methods and similarity approaches.
We still define the recommendation score from user u to an unobserved item i as
a sparse aggregation of the scores of all observed items by the user. However, the
score of each item is no longer a defined value, i.e., 1 and 0, but is calculated as the
dot product of the item’s latent factor vector and the user’s latent factor vector,
as shown in Eq. (5). The dense representations of users and items introduce more
information capabilities.

˜Aui = P�
u

∑

j∈N (i)∩O(u)

QjWji (5)

where W ∈ R
N×N is a sparse aggregation coefficient matrix such as that in

SLIM, and O(u) is the set of all observed items of user u. To speed up the
learning process, N (i) representing the set of near neighborhoods of item i, is
added to select items in O(u). This operation can be viewed as feature selection
[9]. We utilize the cosine similarity, which is calculated based on co-click/co-
visitation behaviors to items by users, to retrieve iknn near neighborhoods of
item i, i.e., |N (i)| = iknn. Finally, taking into account all users, the loss function
is defined as follows:

LF =
1
2

M
∑

u=1

N
∑

i=1

‖Aui − g(P�
u

∑

j∈N (i)∩O(u)

QjWij)‖2F

+
β1

2
‖P‖2F +

β2

2
‖Q|‖2F +

β3

2
‖W‖2F + λ‖W‖1 (6)

where g(x) = 1/(1+ex)) is a sigmoid function, which is a common choice for one-
class recommendation. We add the constraint diag(W) = 0 to prevent learned
item similarities from being affected by the item itself, and drop the nonnegativ-
ity constraint, i.e., W ≥ 0, compared to SLIM as the reason we aforementioned.

Stochastic gradient decent technology (SGD) is used to solve this optimiza-
tion problem, and the gradients of the parameters are listed as follows:

∂LF

∂Pu
= −(Aui − g(˜Aui))g′(˜Aui)

∑

j∈N (i)∩O(u)

QjWji + β1Pu (7)

∂LF

∂Qi
= −

∑

j∈N (i)∩O(u)

(Auj − g(˜Auj))g′(˜Auj)PuWij + β2Qi (8)
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∂LF

∂Wij
= −(Aui − g(˜Aui))g′(˜Aui)P�

u Qj + β3Wij ± λ (9)

where g′(x) = g(x)/(1 − g(x)) is the derivative of function g(x). Then, with a
learning step size η1, the parameters are updated using SGD.

4.2 GAPfm with Sampling Strategy

The work about GAPfm in [14] mainly focuses on graded relevance domains,
such as rating data, and takes GAP as the objective metric in learning to rank.
However, in domains with binary relevance data, we would still like to take full
advantage of high informativeness and discriminative power of GAP to dynam-
ically mine potential preferred items and to avoid the trap of the suppression of
preferences for items about which the user is unaware. That is, we utilize the
sparse aggregation coefficient matrix (the item similarity matrix) learned from
FSLIM to estimate the pseudo rating of each item for each user, which can be
demonstrated as:

yui =

⎧

⎪

⎨

⎪

⎩

g
(

P�
u

∑

j∈N (i)∩O(u)

QjWji

)

, i /∈ O(u)

1, i ∈ O(u)

(10)

It is likely that some values will be prefill into matrix A. The closer the value of
yui to 1, the more likely item i is a potential preferred item for user u, since the
value of yui depicts the relationship between item i and the user. Thus, according
to the value of yui, we select the top pn unobserved items as potential preferred
items for user u, and record the indexes of all these items and already observed
items into a set O′(u) as well as record the pseudo ratings (the values of yui) of
all items in O′(u) into a set Y (u). Then, we change the thresholding probability
δu(y) as a confidence score of that pseudo rating y ∈ Y (u) being the threshold
value for user u, i.e., regarding items with a pseudo rating equal or larger than
y as potential preferred ones, and the others as not preferred ones, as follows:

δu(y) =
exp(y)

∑

t∈Y (u) exp(t)
(11)

The larger the value of δu(y) or of y, the more credible the result of this division.
Then, we update the formulation of GAP in Eq. (3) as follows:

GAPu =
1

Zu

N
∑

i=1

Iui

Rui

N
∑

j=1

SuijIujI(Ruj ≤ Rui) (12)

Zu =
∑

t∈Y (u)

nut

∑

l∈Y (u)&l≤t

δu(l)

Suij = I(yui < yuj)
∑

t∈Y (u)&t≤yui

δu(t) + I(yuj ≤ yui)
∑

t∈Y (u)&t≤yuj

δu(t)
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where Rui denotes the ranked position of item i for user u, Iui indicates whether
the index of the item is in O′(u), and I(x) is a binary indicator function, such
as those in GAPfm. Zu is a constant normalizing coefficient for user u, where
nut denotes the number of items rated with pseudo rating t to user u, Suij is a
intermediate variable whose value is related to the sorted list.

Then we use g(x) function and parameters P,Q to estimate the term of
1

Rui
≈ g(fui) and I(Ruj ≤ Rui) ≈ g(fuj − fui), where fui = P�

u Qi, in Eq. (12)
to get a smoothed version of GAP as follows:

GAPu ≈ 1
Zu

N
∑

i=1

Iuig(fui)
N

∑

j=1

SuijIujg(fuj − fui) (13)

Then, taking into account all users and adding two Frobenius norms ‖P‖F and
‖Q‖F as well as parameters β4 and β5 to control the magnitude of regularization,
the final objective function of GAPfm is shown as follows:

LG =
M
∑

u=1

N
∑

i=1

Iuig(fui)
N

∑

j=1

SuijIujg(fu(j−i)) − β4

2
‖P‖2F − β5

2
‖Q|‖2F (14)

Note that, Eq. (14) has dropped the coefficient 1/M and 1/Zu since they are
independent of the latent factors and have no influence on the optimization
procedure. Now, we use the stochastic gradient ascent (SGA) to solve this opti-
mization problem, and the gradients of the parameters are as follows:

∂LG

∂Pu
=

N
∑

i=1

Iui

(

g′(fui)
N

∑

j=1

IujSuijg(fu(j−i)) · Qi

+ g(fui)
N

∑

j=1

IujSuijg
′(fu(j−i)) · (Qj − Qi)

)

− λPu (15)

∂LG

∂Qi
= Iui

(

g′(fui)
N

∑

j=1

IujSuijg(fu(j−i)) +
N

∑

j=1

Iuj

[Sujig(fuj) − Suijg(fui)]g′(fu(j−i))
)

Pu − λQi (16)

Then, we update the parameters in GAPfm using SGA with a learning rate η2.

4.3 CPLmg Recommendation Model

Now, we introduce how to combine FSLIM and GAPfm under MF framework
to implement CPLmg, so that they can mutually reinforce each other and can
better learn from complex user-item interactions. We propose to train FSLIM
and GAPfm using a multi-task learning approach [8] where the latent factor
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MGAPfm

FSLIM

W ji

latent vectors of 
items 

latent vector
 of item i

latent vector
 of user u

sampling

aggregation 
for item i

Aui
~

Fig. 1. The framework of CPLmg

matrices P and Q are shared underlying variables, as shown in Fig. 1. In partic-
ular, the matrices P and Q are jointly updated by FSLIM and GAPfm in each
co-training round by modeling the task of pointwise methods and the task of
L2R methods. The additional item similarity matrix W further helps GAPfm
mine potential preferred items, which allows information transfer between two
tasks [3]. Furthermore, the trade-off controlling parameters in CPLmg are the
learning rate parameters, i.e., η1 and η2, since the relationship between the val-
ues of η1 and η2 determines the impact of each component on the model learning
process. CPLmg is trained until both FSLIM and GAPfm are converged or until
reaching the maximal number of iteration.

4.4 Time Complexity

The time complexity of CPLmg comprises two parts which accumulate linearly,
i.e., the time cost of FSLIM and GAPfm. Thus, CPLmg finally takes O(M |Ī|3K+
M |J̄ |(|Ī| + ln(|J̄ |)) time to update the parameters in each iteration.

4.5 Recommendation

At the prediction phase, we measure the final preference score of unobserved
items to each user as follows:

˜Aui = P�
u

∑

j∈N (i)∩O(u)∪{i}
QjW′

ji (17)

where W′ = W + w ∗ I, and I ∈ R
N×N is an identity matrix, and w is a

weight parameter of the combination of prediction functions in FSLIM, i.e.,
˜Aui = P�

u

∑

j∈N (i)∩O(u) QjWji and in GAPfm, i.e., ˜Aui = P�
u Qi, respectively.

The value of w is related to the trade-off controlling parameters of the framework
CPL, and we set the value of the ratio of η2

η1
to w. The items from the set I\O(u)

with the largest prediction values based on Eq. (17) are recommended to the user.
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Table 1. The datasets used in evaluation

Dataset #users #items #trans Density Ratings Thresholda

AppData 20,467 40,259 1,022,339 (installations) 0.124% – –

ML100K 943 1,682 100,000 (ratings) 6.30% 1–5 1
aThe user-item pairs with ratings equal or greater than threshold are positive examples,
the others are the missing ones.

So far, we have implemented CPLmg based on two components: FSLIM and
GAPfm. A question then arises: why does the combination of these methods
promote the top-N performance under CPL framework. There are four possi-
ble reasons: (1) The learning directions of FSLIM and GAPfm are generally
consistent when learning the model parameters P and Q through the gradi-
ent approach. Both of them tend to increase the value of a dot product with
respect to positive examples. (2) The sampling procedure based on the item
similarity matrix W brings more information from FSLIM to GAPfm to make
GAPfm more informative. (3) The multi-task learning approach allows informa-
tion transfer between the two tasks. (4) CPLmg balances the variance and bias
of the model, as previously discussed. Thus, our proposed CPLmg approach can
yield better performance for top-N recommendations, which is demonstrated by
the following experiments.

5 Experimental Results

5.1 Datasets and Settings

Our experiments are based on two datasets, AppData and MovieLens-100K
(ML100K). The characteristics of these two datasets are shown in Table 1.

The dataset AppData is from users’ log files where the users’ interactive
behaviors with mobile applications are recorded for six months. Since we are
more concerned about which applications the user will install on their smart-
phone, we only keep already installed mobile applications for users. Then,
each observed user-item pair represents one record of the user installing the
application.

The ML100K is a public dataset and it is organized in rating forms. However,
since we only discuss the one-class recommendation problem in this paper, the
ratings are converted to the appropriate binary form based on the threshold h,
i.e., the user-item pairs with ratings higher than h are positive examples, the
others are the missing ones. To simplify the analysis, we give the best value of the
threshold in our experiments, i.e., h = 1. In the experiment, mobile applications
and movies are the items to be recommended.

We randomly select records from the users’ historical data to keep a certain
number of observed items for each user as the test data, and set the rest of the
records as the training set. For example, “Given 10” denotes that for each user,
we randomly select ten observed items as unknowns in the training set, but as



A Combined Framework of Pointwise Prediction and Learning to Rank 269

positive examples in the test set. Then, we measure the performance over these
positive examples in the test data.

Precision is a widely used evaluation metric in RSs. It reflects the ratio of
relevant items in the ranked list given a truncated position. In the case of top-N
RSs, MAP (mean average precision) and MRR (mean reciprocal rank) are more
practical, as they are position-related metrics. To better verify the properties of
the model, we apply all these three metrics to evaluate the performance of the
new and compared methods in this paper.

Table 2. Performance comparison based on the top-5 recommendation items

Method AppData/Given 3 AppData/Given 10

Params1 Precision MRR MAP Params Precision MRR MAP

iPOP – – 0.0989 0.2874 0.1098 – – 0.2830 0.6303 0.2264

ItemKNN 50 – 0.1126 0.3164 0.1290 50 – 0.3601 0.6089 0.2971

FISMauc 0.8 1e−5 0.1002 0.2895 0.1108 0.9 1e−5 0.2989 0.6338 0.2395

GAPfm 0.01 – 0.1186 0.3136 0.1348 0.01 – 0.3862 0.7053 0.3132

SLIM 0.1 0.5 0.1563 0.3948 0.1759 0.1 0.5 0.4017 0.7070 0.3177

FSLIM 0.06 0.14 0.1601 0.4158 0.1801 0.04 0.12 0.4072 0.7164 0.3173

NeuMF 10 – 0.1698 0.4209 0.1894 10 – 0.4098 0.7203 0.3184

CPLmg 245 22 0.1799 0.4377 0.2022 245 22 0.4208 0.7345 0.3305

Method ML100K/Given 3 ML100K/Given 10

Params Precision MRR MAP Params Precision MRR MAP

iPOP – – 0.0417 0.1153 0.0415 – – 0.1324 0.3001 0.0823

ItemKNN 50 – 0.0697 0.1855 0.0696 50 – 0.1769 0.3885 0.1152

FISMauc 0.7 5e−6 0.0491 0.1119 0.0413 0.6 1e−6 0.1342 0.2948 0.0808

GAPfm 0.05 – 0.0923 0.2497 0.0987 0.05 – 0.1820 0.3998 0.1475

SLIM 0.2 0.6 0.0982 0.2519 0.1009 0.1 0.5 0.2232 0.4722 0.1537

FSLIM 0.002 0.005 0.1034 0.2590 0.1113 0.001 0.005 0.2398 0.4795 0.1599

NeuMF 8 – 0.1078 0.2601 0.1132 8 – 0.2399 0.4819 0.1614

CPLmg 350 35 0.1194 0.2708 0.1298 350 35 0.2483 0.4916 0.1712

5.2 Experimental Comparisons with Previous Models

We compare our methods CPLmg and FSLIM with six baselines as follows: (1)
iPOP recommends a certain number of the most popular items from the training
set to all users. (2) ItemKNN is a traditional item-based collaborative filtering
method using Jaccard similarity. (3) FISMauc [5] considers ranking errors based
on loss function and obtains better performance than FISMrmse, which considers
the pointwise squared error loss function. Therefore, we do not further report
on the performance of FISMrmse. (4) NeuMF [4], which is a state-of-the-art
method using neural network-based collaborative filtering (NCF) framework. (5)
SLIM and (6) GAPfm are related to two components of CPLmg, respectively.
For each model, the parameters were empirically tuned to their optimal values
in the experiments and they were recorded in Table 2, i.e., for ItemKNN, they
are the number of neighbors; for FISMauc, they are the user-specific parameter
α and the learning rate; for GAPfm, they are the regularization parameters;
for SLIM and FSLIM, they are both the �1-norm and �2-norm regularization
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parameter; for NeuMF, it is the number of negative samples; for CPLmg, they are
the number of near neighborhoods iknn and the number of candidate potential
positive examples pn.

Since the size of the recommendation window is limited in practice, we mea-
sure all the performance values in the experiments which are reported in this
subsection based on the top-5 recommendation, and the results for top-10 rec-
ommendations are shown in the next subsection.

Table 2 shows that CPLmg achieves the best performance than the baselines
according to all three metrics. Then, it is NeuMF, which is the state-of-the-art
method using implicit feedback. It proves that the proposed CPLmg is highly
competitive for top-N recommendation tasks for reasons previously discussed,
and also proves that the combination of FSLIM and GAPfm is effective since
the performance of FSLIM and GAPfm is not good as NeuMF before the com-
bination. We can also observe that the performance of FSLIM is better than
SLIM. This indicates that dense representations of the user and item matrix can
better model the users’ preferences. The results also show SLIM and GAPfm
outperform the remaining methods, i.e., iPOP, ItemKNN, and FISMauc. This
observation provides empirical evidence that SLIM and GAPfm approaches are
more effective for top-N recommendations. This is one reason why we choose
SLIM and GAPfm as the two components in our new framework. Furthermore,
it can be noted that the performance of all methods is better when the number
of given items increases from 3 to 10. The reason for this lies in the fact that
more preferred items in the test data can better reveal the preferences of users
and more preferred items in the test means a higher chance of ranking potential
preferred items in the top positions.

5.3 Analysis of CPLmg Components

In this section, we describe the experiments conducted to explore the influence
of the main parameters on CPLmg, i.e., the number of neighborhoods when con-
ducting feature selection for FSLIM, the size of the candidate potential preferred
items in GAPfm sampling process, and the learning rates. It is worth pointing
out when we change the settings of one of these parameters, the others are set to
their optimal values, e.g., iknn = 245, pn = 22, η1 = 5×10−2, η2 = 10−4 for App-
Data. All experiment results given in this section are under the condition, i.e.,
“Given 10”. Due to the space limitation and without loss of generality, we only
report the parameter influences for the top-10 recommendations on AppData.
Similar results were observed on ML100K data.

iknn. We first conducted an experiment to investigate the influence of the num-
ber of near neighborhoods iknn. The results are shown in Fig. 2(a)–(c). We can
observe that the values of all three metrics including precision, MRR, and MAP
significantly increase at the beginning, then after the turning points, i.e., 240,
all values decline. This proves the effectiveness of the feature selection algorithm
and it might have an optimal value of iknn. The value of iknn is not the bigger
the better, since too many similar items may blur the preference information to
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(a) PRECISION@10 (b) MRR@10 (c) MAP@10

(d) PRECISION@10 (e) MRR@10 (f) MAP@10

Fig. 2. Results on different parameters iknn and pn for top-10 recommendations

be learned for a user. Note that the iknn is not the final number of neighbor-
hoods to be considered since |N (i) ∩ O(u)| ≤ iknn, |O(u)|, and usually |O(u)|
might be small in practice, e.g., the average number of installed applications
over users in AppData is smaller than 50.

pn. The value of pn controls the number of candidate potential preferred items
in the sampling process of GAPfm. The influence of pn on the recommendation
performance is shown in Fig. 2(d)–(f). We can observe that precision, MRR, and
MAP performance can be improved by properly increasing pn. However, when
the increasement is over a turning point, i.e., 20, the performance starts to decline
sharply. The reason for this is that a larger value of pn also introduces more
false preferred items. This observation proves that it is critical to properly take
into account missing values within the model in domains with binary implicit
feedback, since the selected missing values can alleviate the overfitting risk.

(a) PRECISION@10 (b) MRR@10 (c) MAP@10

Fig. 3. Results on different parameters η1 and η2 for top-10 recommendations
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η1 and η2. In this part, we provide the experiment results based on different
values for two parameters η1 and η2 which control the learning step sizes of
FSLIM and GAPfm, respectively. As previously mentioned, these two parameters
also act as a trade-off between the two components of CPLmg, i.e., FSLIM and
GAPfm. The influence of η1 and η2 is shown in Fig. 3. We observe that all
criteria show the same changes on different η1 and η2 values. We also observe
that some of the performance values are lower than the normal level. This is
because η1 and η2 will restrain each other in some settings where both η1 and
η2 try to dominate the learning process, i.e., η1 and η2 have very close values.
Furthermore, the largest performance values are fastened in the top right corner
while the performance values in the bottom left corner also tend to increase.
All these results show that the performance values increase with the proper
increasement of divergence between these two parameters.

6 Conclusions and Future Work

In this paper, we proposed a new framework, CPL, where pointwise prediction
and L2R are inherently combined to discriminate user preferences on unobserved
items and to improve the performance of top-N recommendations. Moreover, to
verify the effectiveness of CPL, we implement CPLmg which takes FSLIM and
GAPfm as its two components, where FSLIM is a variant of SLIM by infusing
dense representations. The components reinforce each other through information
interchange based on the dense representations and aggregation coefficients. The
final experiments prove that CPLmg is effective and outperforms the others on
various evaluation metrics. There are some potential research topics for future
study. Firstly, the combination approach between two components of CPLmg can
be extended. We would like to explore a more complex combination. For instance,
we can fuse two components based on the neural network framework motivated
by NCF [4]. Secondly but not lastly, other models of pointwise prediction and
L2R methods can be tried in the framework.
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