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ABSTRACT
The next-item recommendation has attracted great research inter-
ests with both static and dynamic users’ preferences considered.
Existing approaches typically utilize user-item binary relations,
and assume a flat preference distribution over items for each user.
However, this assumption neglects the hierarchical discrimination
between user intentions and user preferences, causing the methods
have limited capacity to depict intention-specific preference. In fact,
a consumer’s purchasing behavior involves a natural sequential
process, i.e., he/she first has an intention to buy one type of items,
followed by choosing a specific item according to his/her preference
under this intention. To this end, we propose a novel key-array
memory network (KA-MemNN), which takes both user intentions
and preferences into account for next-item recommendation. Specif-
ically, the user behavioral intention tendency is determined through
key addressing. Further, each array outputs an intention-specific
preference representation of a user. Then, the degree of user’s
behavioral intention tendency and intention-specific preference
representation are combined to form a hierarchical representation
of a user. This representation is further utilized to replace the static
profile of users in traditional matrix factorization for the purposes of
reasoning. The experimental results on real-world data demonstrate
the advantages of our approach over state-of-the-art methods.
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1 INTRODUCTION
Recommender systems (RSs) can help users find their preferred
items from a vast number of choices, thus can enhance user experi-
ences. Moreover, they allow platforms, such as Amazon, Tmall, and
Uber, to increase user engagement and derive new business value.
In fact, user behavior data (e.g., click, purchase, and check-in) is
growing exponentially and has been sequentially collected by the
platforms as a knowledge source to be fed into RSs. For instance, 62
million user trips were accumulated in July 2016 by Uber, and more
than 10 billion check-ins were generated by over 50 million users
at Foursquare [34]. As a result, next-item RSs, which recommend
the next item to users according to their interests, are becoming a
hot research topic in recent years [10, 18, 30, 33].

Along this line, efforts have been made to combine information
on users’ previously (also called long-term) and recently (also called
short-term) accessed items in different ways. This combination has
been proven effective for next-item recommendation tasks, since it
can depict the static and dynamic preferences of a user simultane-
ously [7]. Existing next-item recommendation approaches usually
model users’ preferences by utilizing user-item binary relations and
basing item sequences. As a result, they have a limited modeling
capacity in capturing sequential characteristics over context/side
information, such as the sequences of item categories [12]. Besides,
existing methods assume a flat preference distribution over items
for each user and neglects the hierarchical distinction between user
intentions and user preferences, which makes it hard to fully exploit
users’ structural decision patterns for user preferences learning.

To address the above issues, we introduce the concept of user
intention and utilize item category information to assist in mod-
elling user preferences. Although user intention modeling has been
a research topic for a long time in marketing [22], it is hard to
transfer these modeling methods to RSs. Thus, instead of trying to
investigate the behavioral intentions, we use the category of items
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Figure 1: An illustration of the user’s hierarchical model,
which extends user-item binary relations to user-intention-
item triadic relations, where the intention is indicated by
the product category to be bought in this case, and the
intention-item relations imply user preferences.

the user desires to represent them directly. Some examples are listed
as follows: different product categories such as clothing and elec-
tronics, different service types such as dining and entertainment,
and different area types such as tourism region and commercial
district. Despite its simplicity, category information provides an
intuitive way to represent users’ behavioral intentions.

Generally, a user makes decisions with consideration of both
his/her intentions and preferences [18], and decision-making in-
volves a natural sequential process. For instance, to purchase an
item or visit a point-of-interest (POI), the decision process can be
roughly divided into two steps. The first step is related to his inten-
tions, i.e., a high-level selection, and the second step relies on his
preferences to make a specific selection. A specific example of this
circumstance would be, after a person purchases a pair of trousers,
she may also have an intention to select one top which matches
the trousers to complete the whole look. Then, she would consider
which top is preferred for purchase. This decision process can be
based on user-intention-item triadic relations, as shown in Figure
1. Compared to user-item binary relations, the user-intention-item
triadic relations can describe more elaborate decision processes
of users because the flat user preference distribution over items is
refined into specific categories/intentions.

To this end, in this paper, we propose a novel model, namely
Key-ArrayMemory Neural Network (KA-MemNN), in which user
behavioral intentions and user preferences are combined to form
hierarchical and well-rounded representations of users. Specifi-
cally, we first generate user-specific category/intention embeddings
through an attention network, which is fed with related items and
guided by the target user. Then, we evaluate users’ intention ten-
dencies through category addressing, followed by an aggregation
of the items retrieved from a memory bank (MB) to summarize the
intention-specific preference of users. All intention-specific prefer-
ence representations are further summarized to output a more well-
rounded one. This representation is adjusted according to the long-
and short-term MBs. Finally, to learn the parameters, a pairwise
loss function is applied to conventional matrix factorization (MF),
but the static representations of users are replaced with the outputs
of KA-MemNN. Our contributions are summarized as follows: 1)
We utilize hierarchical and well-rounded representations of users
based on user-intention-item triadic relations for next-item recom-
mendation. 2) We design a memory network, i.e., KA-MemNN, to

model user behavioral intentions and preferences based on both
long- and short-term information. 3) We perform experiments on
real-world data, and the results show that our model consistently
outperforms state-of-the-art methods in terms of AUC (area under
the curve) and Recall evaluation metrics.

2 RELATEDWORK
Our KA-MemNN model addresses the next-item recommendation
problems, and it conducts representation learning for users through
a memory neural network (MemNN). Therefore, our method is
related to state-of-the-art next-item approaches, i.e., Markov chains
(MCs) and neural networks (NNs) including representation learning
and MemNNs.

MCs have become classic tools to handle users’ sequentially
generated behaviors through sequential pattern mining [24, 32] and
transition modeling [21, 36]. For instance, based on the insight that
frequent patterns can be utilized to predict the next items users will
access, [32] emphasizes personalities in their model by discovering
user-specific frequent patterns. In contrast, [21] proposed FPMC
which directly utilizes matrix factorization (MF) to capture users’
general tastes and combines MF with a first-order MC to predict the
next item based on the recent items by learning a transition graph
over the items. To alleviate problems caused by sparsity issues
and long-tailed distributions, [7] proposed FOSSIL, which further
integrates FPMC with a similarity-based method, i.e. FISM [14].
These methods attempt to combine user long-term and short-term
preferences. Nevertheless, the sequential factors and personalities
are not adequately utilized to mine item-item relations, which may
impair the recommendation performance [27].

In recent years, researchers have begun to embrace NNs in RSs
since deep learning has achieved tremendous success in many tasks
[5, 9, 23]. For instance, [8] and [29] designed B-Interaction and at-
tentional pooling layers respectively, to automatically learn second-
order feature interaction based on traditional factorization machine
technology. [28] and [16] employed recurrent neural networks
(RNNs) to conduct user long-time visit prediction and real-time
location prediction by exploring trajectory data. However, items
in a session may not follow a rigidly sequential order in many
real scenarios, e.g., items in a shopping cart, where RNN is not
applicable. Beyond that, hierarchical representation learning has
attracted immense attention. These methods usually combine users’
previously and recently accessed items differently to learn high-
level representations. For instance, [10] and [27] both employed a
two-layer structure to construct a hybrid representation over users
and items. [34] argued that the weights of different components
should not be fixed and thus proposed an attention-based SHAN
(the sequential hierarchical attention network). Our work follows
this pipeline and constructs hierarchical representations for users,
but the main difference being that we utilize two types of sessions
simultaneously, (i.e. item and category sessions), by considering
user-category-item triadic relations.

MemNNs have been proven useful for a variety of document
reading and question answering (QA) tasks, such as end-end mem-
ory neural networks (EE-MemNNs) [25] and key-value memory
neural networks (KV-MemNNs) [19]. The memory component, i.e.,
the memory bank, of MemNNs can increase modeling capacity as
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well as generate a more informative representation of historical
knowledge to track long-term dependencies. However, the applica-
tions of MemNNs in RSs usually base item sequences [2]. Limited
work utilizes MemNNs with taxonomy information. Recently, a
non-session approach CMN (a collaborative memory network) [4]
was proposed. CMN takes the users who have co-click/co-visitation
behaviors with the target user on a specific item as the neighbor-
hoods. These neighborhoods are stored into internal memory to
accumulate local neighborhood-based information. However, CMN
learns static representations of users, and thus, it is inadequate for
users’ dynamic preference modeling. Our method is also related to
TMRN [12] in which memory neural networks have been first com-
bined with taxonomy information. However, TMRN attempts to
encode the hierarchical category semantics without incorporating
item information, which cannot fully exploit the link information
from user-category-item triadic relations.

3 THE PROPOSED METHOD
3.1 Problem Formulation
LetU, I, and G represent the sets of users, items, and categories
(categories and intentions have no distinction in this paper), respec-
tively. Ip ⊆ I is an item subset which records the items belonging
to the category p ∈ G. An item a ∈ I may belong to multiple
categories which are denoted by the category subset Ga ⊆ G. A
user i ∈ U has two related behavior sequences: item sessions
and category sessions. Si = {Si

1,S
i
2, · · · ,S

i
t |S

i
t ⊆ I} denotes the

item sessions and Ai = {Ai
1,A

i
2, · · · ,A

i
t |A

i
t ⊆ G} denotes the

category sessions, where Ai
t = ∪a∈Si

t
Ga , and Si

t (resp. Ai
t ) is

the t-th item session (resp. category session) following the times-
tamps. For a fixed time t , the session Ai

s = Ai
t and Si

s = Si
t can

reflect user i’s short-term intentions and preferences, while the
sessions before the timestamp t denoted by Ai

l = ∪T ∈[1,t−1]A
i
T

and Si
l = ∪T ∈[1,t−1]S

i
T can reflect user i’s long-term intentions

and preferences. Formally, given a user and two item sessions Si
l

and Si
s along with two corresponding category sessions Ai

l and
Ai

s , we aim to recommend the next items through mining user-
intention-item triadic relations.

3.2 Overview
Our KA-MemNN shown as Figure 2 has three core components:
the attention neural network (ANN), the key-array memory bank
(KA-MB), and the hierarchical weighting unit (HWU). ANN takes
the target user and related visited items as input to generate user-
specific category embeddings. The HWU learns user-category-item
relations. The KA-MB, which organizes a user’s past behaviors,
supports the HWU as an input. More specifically, two KA-MBs, i.e.,
the long- and short-term KA-MBs, organize the pair of (Si

l , A
i
l )

and the pair of (Si
s , Ai

s ), respectively. By querying and reading
the corresponding KA-MB, the HWU in each hop generates hybrid
embeddings for users. Then, through two hops of accumulation,
we obtain users’ final preference representations. Theoretically, we
can construct one KA-MB for each item session in Si along with
its corresponding category session in Ai . In practice however, due
to the sparsity of user’s behavior data and to simplify the process
of investigating users’ sequential behaviors, we only construct the

𝑢"

𝑉$"

ANN

HWU

𝑇

ANN

HWU

𝑇𝑢"$ 𝑢"&

𝑉&"

Long-term KA-MB Short-term KA-MB

1-hop 2-hop

Final 
preference 
representation

Figure 2: The overview of the network architecture.

aforementioned KA-MBs. Next, we introduce each part of our model
in detail.

3.3 General Embedding Construction
Since the basic IDs of users and items (i.e., one-hot representa-
tions) have a very restricted representation capability, we first em-
ploy two separate fully connected layers with the weight matrices
U ∈ RN×K and V ∈ RM×K to construct two continuous low-
dimensional embeddings of users and items, respectively, where
N and M are the numbers of users and items, while K is the di-
mensionality of vectors. Here, we only feed the fully connected
layer network with one-hot representations of users (or items), and
then the network outputs the corresponding embeddings denoted
as the bold lowercase ui ∈ RK for user i , i.e., the i-th row ofU (or
va ∈ RK for item a, i.e., the a-th row of V ). Both ui and va are
reshaped into a column vector.

We call theseui andva as the general/static embeddings of users
and items since they only reflect users’ general preferences and do
not differentiate between users’ new and old behaviors. This is the
critical limitation of non-session RSs, such as BPR [20] and CMN
[4], and we address this problem by introducing the session-based
KA-MB, which will be discussed later.

3.4 Semantic Category Embedding
Construction

Instead of constructing the embeddings of categories based on
primary IDs, in this paper, we generate a more informative repre-
sentation using taxonomy information by employing an attention
network, which is based on the users’ and items’ embeddings. The
attention mechanism shares the intuition that humans pay atten-
tion to only the most important parts of the target, and has been
successfully applied in many applications such as machine trans-
lation [1], image captioning [26], and textual content modeling
[31]. Recently, some RSs incorporate a neural attention layer in
their models to learn representations with limited knowledge of
the whole context [11, 35]. However, these learned representations
have no relations with the categories of items, and thus cannot
draw user-specific category embeddings based on items.

In Figure 3a, we construct semantic category embeddings for
each user by designing ANN as follows:

cip = ANN (ui , {va |a ∈ Ii
p }) (1)

Next, we implement ANN by introducing an attention function and
an aggregation function.
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Figure 3: The components of KA-MemNN.

Given a target representation ui ∈ RK , an attention function f
maps |Ii

p | source representations with dimension K , i.e., {va |a ∈

Ii
p }, to a weight vector with dimension |Ii

p |, i.e.,α i ∈ R |I
i
p | , where

Ii
p records user i’s observed items which belong to category p. Each
weight α ia in α i reflects the importance of va ∈ RK for ui . Then,
an aggregation function д is adopted to generate a summarized
representation cip ∈ RK .

(α i1,α
i
2, · · · ,α

i
|Iip |

) = f (v1,v2, · · · ,v |Iip | |ui ) (2)

cip = д(v1,v2, · · · ,v |Iip | |α
i
1,α

i
2, · · · ,α

i
|Iip |

) (3)

We implement f by a neural network as follows:

ha = ϕ(Wva + b0), (4)

α ia =
exp(u⊤i ha )∑

a∈Iip
exp(u⊤i ha )

(5)

whereW ∈ RK×K and b0 ∈ RK are the model parameters. We
first feed the dense embedding vector of items through a multi-
layer perceptron (MLP) [6] to get the hidden representation ha .
Then, ha is utilized with the target representation ui to generate
the weights. ϕ(·) is the activation function and we utilize two RELU
functions[17] to enhance the nonlinear capability and filter out
some trivial information. Finally, we generate the user-specific rep-
resentation of categories as a sum of the item embeddings weighted
by the importance scores as follows:

cip =
∑
a∈Iip

α ia ·va (6)

cip incorporates the information of all observed items belonging to
category p of user i .

3.5 KA-MB & HWU
After obtaining the embeddings of users, items, and categories, we
can schedule them into memory to extract vital information. The
static representation ui is often utilized to make recommendations
in conventional approaches. However, in addition to the immutable
characteristics in users’ preferences, there are many influential
and dynamic factors affecting users’ decisions, such as fashion

trends and promotion activities. Thus, we should update users’
representations based on the static representation ui and the user’s
recently accessed categories and items.

We define two KA-MBs as two pairs of memory slots, i.e., (Ci
t ,V

i
t ),

t ∈ {l, s}, to store user i’s long- and short-term sessions:

Ci
t = [ci1,c

i
2, · · · ,c

i
p , · · · ]

⊤,p ∈ Ai
t

V i
t = [V̂ i

t ,1, V̂
i
t ,2, · · · , V̂

i
t ,p , · · · ],p ∈ Ai

t

V̂ i
t ,p = [v1,v2, · · · ,va, · · · ]

⊤,a ∈ Ip ∩ Si
t (7)

whereCi
t ∈ R |A

i
t |×K and V̂ i

t ,p ∈ R |Ip∩S
i
t |×K . Then, we can conduct

operation functions, such as query and read, on these matrices.
The relation between categories and items has a hierarchical

structure, which is analogous to users’ sequential decision-making
process. Therefore, we design HWU to aggregate the information
from observed items differently according to taxonomy, shown as
Figure 3b. HWU is an extension of key-value memory networks
(KV-MemNNs) [19]. For a standard KV-MemNN, assume we have
a query vector ui ∈ RK , then the task is to reconstruct ui to a
more informative representation by retrieving |Ai

t | key-value pairs:
Ci
t ∈ R |A

i
t |×K and Ṽ i

t ∈ R |A
i
t |×K from the memory bank (MB).

kv(ui ,C
i
t , Ṽ

i
t |ω) = ω(Ci

tui )
⊤Ṽ i

t (8)

where kv(·) is a KV-MemeNN function, and ω(Ci
tui ) ∈ R

|Ai
t | is a

weight vector, or affinity vector describing the similarity between
the target query and the corpus. ω(·) is usually an activation func-
tion like RELU and Softmax. Then, the ui is reconstructed by a
weighted sum of Ṽ i

t , where each value gets the weight from the sim-
ilarity between its corresponding key and the target query. When
the key and value become the same, i.e., Ci

t = Ṽ
i
t , the KV-MemNN

degrades to the end-end memory network (EE-MemNN) [25].
Instead, our HWU generalizes KV-MemNN by replacing the

single value with a variable-length array which records multiple
values, i.e., the Ṽ i

t is replaced by V i
t . The values in the same array

have the same property which makes them have a shared key,
such as all of them belong to the same category. We refer to this
data structure as having a key-array data type. Formally, given the
query ui , the key Ci

t , and the array V
i
t , HWU reconstructs a hybrid
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representation uhybr idi of ui as follows:

u
hybr id
i = HWU (ui ,C

i
t ,V

i
t ) (9)

Next, we implement HWU hierarchically by introducing two oper-
ations on KA-MBs, i.e., array aggregation and key addressing.

Array Aggregation: The purpose of this step is to generate
category-specific representations shown as zi ,t ,p in Figure 3b. The
aggregation operation is a set function, which maps a block of a
matrix, i.e., V̂ i

t ,p , to one single vector, i.e., zi ,t ,p . In this work, we
study three typical aggregation operations on each matrix block
V̂ i
t ,p as follows.
∗ average pooling: It is a linear and nondistinctive combination

of the values in the array.

zi ,t ,p = averaдe(V̂ i
t ,p ) (10)

where zi ,t ,p ∈ RK and the function averaдe(·) computes the mean
over all row vectors. In such a case, all weights in γ i ∈ R |Ip∩S

i
t |

shown in Figure 3b are equal to the value of 1
|Ip∩S

i
t |
.

∗ weighted average pooling: Similar to average pooling, however
the impact from each item is distinguished by the linking strength
between the item and the current status of the user. Weighted
average pooling is set as the default aggregation operation in our
model unless otherwise stated. This is because it achieves the best
performance over other pooling approaches.

γ i = So f tmax(V̂ i
t ,pui ) (11)

zi ,t ,p = γ
i⊤ · V̂ i

t ,p

∗ max pooling: It extracts the maximum value of each dimension
over all elements’ embeddings read from the KA-MB as the the
value of the new vector.

zi ,t ,p =max(V̂ i
t ,p ) (12)

where the function max(·) extracts the maximum value of each
column vector.

Key Addressing: During key addressing, each category p in the
Ai

t is assigned a relevance probability, e.g., β
i
p in Figure 3b, by com-

paring the target user’s embedding to each category’s embedding.

βi = So f tmax(Ci
tui ) (13)

Combining with zi ,t ,p , we obtain a hybrid representation as fol-
lows:

u
hybr id
i =

∑
p∈Ai

t

βipzi ,t ,p (14)

3.6 KA-MemNN
The framework of KA-MemNN is shown as Figure 2. Besides the
KA-MBs and the HWU, we have two additional user-independent
time-aware units shown as T s in the figure just like [19]. These
units are implemented as RELU functions with the parameters
Rl ∈ R

K×K and Rs ∈ RK×K , and two corresponding bias vectors
bl ∈ R

K and bs ∈ RK . Then, all operations are listed as follows:

uli = HWU (RELU (Rlui + bl ),C
i
l ,V

i
l )

usi = HWU (RELU (Rsu
l
i + bs ),C

i
s ,V

i
s ) (15)

Algorithm 1: KA-MemNN

Input: User sessions Si and Ai , initial learning rate η,
regularization λ, and dimension K .

Output: model parameters Θ.

1: Init Θ from Normal Distribution N(0, 0.01);.
2: repeat
3: shuffle the set of observations {(i,Si

l ,S
i
s ,a
+,a−)}

4: for each observation (i,Si
l ,S

i
s ,a
+,a−) do

5: compute usi according to Eq. (15)
6: compute r̂i ,a+ and r̂i ,a− according to Eq. (16)
7: update Θ by the gradient descent optimization
8: end for
9: until convergence
10: return Θ

The usi is the final representation that does not only contain the
information of the user’s general preference, but also has a dynamic
response to users’ current behaviors. Moreover, it is learned by
uncovering the relations over the users, categories, and items.

3.7 Model Learning
After the final user representation has been learned, we further
utilize it with item representations to predict the scores from a user
to items as follows:

r̂i ,a = u
s
i
⊤
va (16)

Next, we employ a pairwise loss function, which is introduced in
[20], to train our model. We randomly select a positive example
a+ from the current visited session of user i , i.e., a+ ∈ Si

s , and a
negative example a− from unvisited items which have a same cate-
gory with the positive example, i.e., a− ∈ (∪p∈Ga+Ip )\(S

i
l ∪ Si

s ).
Then we define a pairwise order r̂i ,a+ > r̂i ,a− based on the assump-
tion that users prefer observed item a+ rather than unobserved
item a− when both of them belong to the same category. The final
optimization function is as follows:

argmin
Θ

∑
(i ,Si

l ,S
i
s ,a+,a−)∈D

−lnσ (r̂i ,a+ − r̂i ,a− )

+λuv ∥ Θuv ∥ +λrwb ∥ Θrwb ∥ (17)

where D is the set of examples, Θuv = {U ,V } and Θrwb =

{Rl ,Rs ,bl ,bs ,W ,b0} are the sets ofmodel parameters, λ = {λuv , λrwb }

is the set of regularization parameters, and σ (x) = 1
1+e−x is a lo-

gistic function. The detailed learning algorithm is presented in
Algorithm 1. Once the model has been learned, we recommend the
items with the largest scores r̂i ,a to user i .

4 EXPERIMENTS
In this section, we empirically evaluate that our proposed approach
outperforms start-of-the-art baselines as well as validate that the
components in our model can improve the recommendation per-
formances with respect to multiple metrics.
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Figure 4: Performance Comparison of Methods for next-item recommendation according to item-based metrics.

Table 1: Statistics of datasets

Dataset Tmall Gowalla
#user 20,202 15,063
#item 24,774 11,897

#category / #region 769 4,544
avg. session length 2.72 3.02

#train session 70,895 128,250
#test session 4,040 3,012

user-item matrix density 0.039% 0.149%
user-intention matrix density 0.978% 0.251%

4.1 Experimental Setup
Datasets. Tmall dataset [10] and Gowalla dataset [3] are em-

ployed to conduct our experiments. Tmall, which is the IJCAI-15
competition dataset1, records users’ historical purchase behaviors
on China’s largest online shopping platform2, while Gowalla3 col-
lects users’ check-in information including the time and locations
of check-ins. We choose purchase behaviors in Tmall and check-
in behaviors in Gowalla to explore users’ preferences. For both
datasets, we extract the data generated in the last seven months
and items which have been observed by more than 20 users to form
the final datasets. Similar to [34], user behaviors in each day are
treated as a session, while all singleton sessions, i.e., containing only
one item are also excluded. We treat the last sessions of 20% of the
users randomly selected as test sessions and randomly remove one
item in each test session as the next item to be predicted. Then, all
sessions, including already processed ones are split into long- and
short-term sessions to train the model. The descriptive statistics of
both datasets are summarized in Table 1. Note that the categories
in Tmall and the region grids of size 1 × 1km2 in Gowalla, which
is divided according to the Geographic Information System (GIS)
coordinates, are treated as behavioral intentions, respectively.

Baselines. We compare our model with the following baseline
algorithms, including non-session recommendation, session-based
recommendation, and hierarchical representation approaches. Mod-
els are tuned for best performance through tuning of parameters,
such as the dimensionality K is set to 50, λuv = λrwb = 0.001 for
Tmall dataset and λuv = 0.05, λrwb = 0.001 for Gowalla dataset.

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=47
2www.tmall.com
3https://snap.stanford.edu/data/loc-gowalla.html

We utilize Adam [15] to optimize the training process, with initial
learning rates are set to 0.05 for both datasets.

1) BPR [20]. A traditional latent factor CF (collaborative filter-
ing) model which optimizes a pairwise loss function. 2) CMN [4].
A non-session memory network, which takes users’ neighborhoods
as the values in the memory bank. We set the number of the hops to
2 since it achieves the best performance on the datasets. 3) FPMC
[21]. This method models user preferences by combining MF, which
captures users’ general preference and a first-order MC to predict
the user’ next action. 4) FOSSIL [7]. This method integrates fac-
tored item similarity with MC to model a user’s long- and short-
term preferences. Note that we set µu and µ as single scalar since
the length of each session is variable. 5) HRM [27]. This method
generates a hierarchical user representation to capture sequential
information and general tastes. We use max pooling as the aggre-
gation operation because this achieves the best result. 6) SHAN
[34]. This model employs two attention networks to mine users’
long- and short-term preferences. 7) TMRN [12]. also a memory
neural network. It combines taxonomy information and encodes
the hierarchical category semantics without incorporating item
information. In this paper, we set the number of hops to one as we
do not have detailed taxonomy information.

Metrics. We employ two commonly used metrics, Recall and
AUC, to evaluate the performance of methods for next-item recom-
mendation. The first metric evaluates the fraction of ground truth
items that have been retrieved over the total amount of ground
truth items, while the second metric evaluates how highly ground
truth items have been ranked over all items. The larger the values
of both Recall and AUC metrics, the better the performance.

4.2 Comparison of Performance
Figure 4 compares the performances of our KA-MemNN model
and the baselines on the Tmall and Gowalla datasets regarding
Recall and AUC metrics. From the figure, we make the following
key observations.

1) Our proposed method KA-MemNN outperforms all baselines
including non-session approaches, i.e., BPR and CMN, traditional
MC-based next item recommendation methods, i.e., FPMC and
FOSSIL, the state-of-the-art hierarchical representation methods,
i.e., HRM and SHAN, and a taxonomy-aware MemNN method,
i.e., TMRN, on both two datasets. For example, at Recall@20, KA-
MemNN improves 8.67% and 10.83% compared with the second-best
method, i.e., TMRN, on the Tmall and Gowalla datasets, respec-
tively, although TMRN also achieves excellent performance. This
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observation empirically verifies the superiority of our proposed KA-
MemNN concerning next recommendation problems with respect
to Recall and AUC metrics. Since only KA-MemNN and TMRN
utilize taxonomy information, the reason behind this improvement
might lie in the fact that the auxiliary information can enrich the
representations of users. Even so, KA-MemNN outperforms TMRN,
which maybe because TMRN cannot fully exploit the link informa-
tion from user-category-relations as aforementioned.

2) The performances of session-based methods including KA-
MemNN, TMRN, SHAN, and HRM are better than those of BPR and
CMN methods, which neglect the sequential information, depicted
by a substantial improvement gap, e.g., 13.58% on Tmall and 30.30%
on Gowalla in relation to Recall@20 between KA-MemNN and BPR.
This indicates that the combination of users’ long- and short-term
behaviors is necessary to promote recommendation performance,
and users’ current intentions and preferences have a large influence
on users’ next behaviors.

3) The performance of CMN is better than that of BPR, although
both of them are non-session approaches. The reason for this may
lie in the fact CMN accumulates useful knowledge from thememory
banks to form informative representations of users, which verifies
the effectiveness of MemNNs as well.

4.3 Influence of Components
Influence of the Category Embedding. To gain further insight

into the influence of ANN, we propose two simplified versions of
KA-MemNN: a general category embeddings version called GC-
MemNN and a no category embeddings version called NC-MemNN.
GC-MemNN eliminates the attention layer between categories
and items and generates an additional embedding matrix for cat-
egories, such as user embeddings and item embeddings. In con-
trast to GC-MemNN which still retains the relationship between
categories and items, NC-MemNN excludes category information
and directly aggregates item embeddings without key addressing.
This method is more like traditional EE-MemNNs. We also apply
Recall@N =

∥Rec@N∩Ga+ ∥

∥Ga+ ∥
to evaluate the performance on cate-

gory predictions, where Rec@N is the set of the categories which
the top-N recommended items belong to, and a+ is the observed
item in the test dataset. Due to space limitation, we show the results
under the metric of Recall@20 [34]. In addition, we evaluate the
score of each category as an average of the scores of its items. This
way the intention-based AUC can also reflect the performance of
item recommendations.

Table 2 shows that on both datasets, KA-MemNN has the best
performance regarding item-based and intention-based Recall@20
and AUC, followed by GC-MemNN. This indicates that the architec-
ture of KA-MemNN is effective, and the user intention information
enhances the performance when conducting next-item recommen-
dation. This conclusion is further validated by the observation that
the performance of GC-MemNN is better than those of NC-MemNN
and TMRN (TMRN is selected since it achieves the best performance
over the other baselines). Although GC-MemNN learns a general
category representation for all users, it still considers the infor-
mation of categories compared to NC-MemNN, which promotes
the performance. We argue the reason why the performance of
GC-MemNN is not as good as KA-MemNN is because of the latter’s

Table 2: Influence of the category embedding.

Tmall Item Category
Method Recall@20 AUC Recall@20 AUC
TMRN 0.1438 0.8012 0.2598 0.8432

NC-MemNN 0.1386 0.8009 0.2583 0.8359
GC-MemNN 0.1492 0.8256 0.3028 0.8501
KA-MemNN 0.1554 0.8512 0.3469 0.8597
Gowalla Item Category
Method Recall@20 AUC Recall@20 AUC
TMRN 0.4365 0.9796 0.5123 0.9734

NC-MemNN 0.4293 0.9665 0.5084 0.9805
GC-MemNN 0.4536 0.9889 0.5531 0.9884
KA-MemNN 0.4838 0.9896 0.5729 0.9901

Table 3: Influence of long- and short-term MBs.

Tmall Item Category
Method Recall@20 AUC Recall@20 AUC

L-MemNN 0.1173 0.7381 0.2283 0.7899
S-MemNN 0.1596 0.8403 0.3391 0.8438
LS-MemNN 0.1453 0.8398 0.3212 0.8376
KA-MemNN 0.1554 0.8512 0.3469 0.8597
Gowalla Item Category
Method Recall@20 AUC Recall@20 AUC

L-MemNN 0.4034 0.9011 0.4150 0.8945
S-MemNN 0.4368 0.9529 0.5314 0.9642
LS-MemNN 0.4569 0.9794 0.5427 0.9788
KA-MemNN 0.4838 0.9896 0.5729 0.9901

attention layer, which can learn personalized category embeddings
as well as personalized relations between categories and items for
each user. Moreover, KA-MemNN has a more significant perfor-
mance improvement of intention-based metrics compared to the
improvement of item-based metrics. On online platforms, the for-
mer is vital for improving user experiences since it can lower the
risk of recommending unacceptable items.

Influence of Long- and Short-termMBs. To explore the influ-
ence of long- and short-term MBs, we further propose the addi-
tional three simplified versions of KA-MemNN, namely L-MemNN,
S-MemNN, and LS-MemNN. Compared to the framework of KA-
MemNN, the simplified versions only have one hop, e.g., 1-hop
in Figure 2. More specifically, the framework of L-MemNN and
S-MemNN only has long-term KA-MB and short-term KA-MB, re-
spectively. For LS-MemNN, we will fill one KA-MB with all sessions
of the target user, i.e., Si

l ∪ Si
s and Ai

l ∪ Ai
s .

Table 3 shows that the approaches fed with more or newer users’
behavior data generally perform better. For example, the perfor-
mances of S-MemNN and LS-MemNN are better than that of L-
MemNN on both datasets in terms of the item- and category-based
Recall@20 andAUC. Additionally, we can guess that the preferences
of users on Tmall are more sensitive to time changes compared to
that of users on Gowalla, since the performance of S-MemNN on
Tmall is even better than that of LS-MemNN, although the latter
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Figure 5: Experimental results for exploring the impact of dimension size K in terms of item-based Recall@20 and AUC.

Item  1
Item  2

Item  3
Item 23

Item 24
Item 56

Item 73
Item 89

Item 90
Item 103

User  1 - Category 1 1 / 0 1 / 0 2 / 0 1 / 0 1 / 0 0 / 1 1 / 0 1 / 0 2 / 1 1 / 0

0.05
0.10
0.15
0.20
0.25
0.30 attention

(a) Tmall dataset

Item  1
Item  2

Item  8
Item 10

Item 16

User  1 - Category 1 5 / 1 1 / 0 0 / 1 3 / 1 1 / 0

0.1

0.2

0.3

0.4

0.5

attention

(b) Gowalla dataset

Figure 6: The heat map of attention which is utilized to construct category embeddings. The color scale indicates the value of
the weights, darker representing a higher weight and lighter a lower weight. The inside annotations use the format as “the
visited times in long-term sessions / the visited times in short-term sessions". For example, “1 / 0" means this item has and
only has been visited once before the current session.

.

employs more users’ behavior data. But on Gowalla dataset, LS-
MemNN achieves better performance than S-MemNN, whichmeans
the long-term sessions can make the model more robust. Even so,
KA-MemNN delivers better performance than LS-MemNN since it
can utilize both long- and short-term information and distinguish
the importance of items in different sessions.

4.4 Influence of Hyper-parameters
Figure 4 shows the values of item-based Recall@20 and AUC for
KA-MemNN across different number of dimensions with size K ,
and also shows the performances of KA-MemNN when it employs
different aggregation operations, i.e., average pooling, weighted
average pooling, and max pooling. Accordingly, we have two major
observations. (1) a larger value of K can improve the performance
since it increases the representation capability of the model. (2)
weighted average pooling achieves the best performance compared
to the other two aggregation operations, since it makes our model
weight the items twice; the lower layer’s weights are the linking
strength between the items and the target user, and the upper layer’s
weights are the linking strength between the categories and the
target user. This weighting mechanism depicts user-intention-item
relations better and exploits the fully modeling capacity of HWU.

4.5 Visualization of Attention
We sample two users from the datasets and visualize the attention
between one selected category and the observed items, which be-
long to the category for each user. Then the attention heat maps on
Tmall and Gowalla are shown as Figure 6. We can observe that the

frequently visited items usually obtain a relatively larger weight
when generating their category embeddings. Also, the items, which
are visited in a recent session, also have a larger impact on their
category embeddings compared to previously visited items. This
phenomena may be reasonable since category-specific users’ pref-
erences are reflected on the frequently visited items that belong to
this category, and users’ current intentions usually have a strong
relation with recently visited items.

5 CONCLUSION
In this paper, to address the next-item recommendation problem, we
took both user intentions and user preferences into consideration
and proposed the KA-MemNN model to capture users’ dynamic
information in a more comprehensive way. Specifically, the degrees
of intention tendencies and the representations of the items which
are viewed by users were jointly utilized to form users’ hierarchical
representations. Then, by assembling an attention model, the repre-
sentation of intentions and the relationship between intentions and
items were personalized for each user. Finally, the experiments on
real-world data validated that our model outperformed the state-
of-the-art approaches with a significant margin in terms of Recall
and AUC metrics. An interesting point of future work is that we
can infuse users’ search queries and discriminative behaviors to
construct more informative user intentions [13].

ACKNOWLEDGEMENT
This work is partially supported by National Key Research and
Development Plan (No. 2018YFB1003800) and NSFC (No. 71531001).

Technical Presentation  WSDM ’20, February 3–7, 2020, Houston, TX, USA

814



REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv Preprint
arXiv:1409.0473 (2014).

[2] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and
Hongyuan Zha. 2018. Sequential recommendation with user memory networks.
In Proceedings of the ACM International Conference onWeb Search and Data Mining
(WSDM). ACM, 108–116.

[3] Eunjoon Cho, Seth A Myers, and Jure Leskovec. 2011. Friendship and mobility:
user movement in location-based social networks. In Proceedings of the SIGKDD
International Conference on Knowledge Discovery & Data Mining. ACM, 1082–
1090.

[4] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative memory network for
recommendation systems. In Proceedings of the International SIGIR Conference on
Research & Development in Information Retrieval. ACM, 515–524.

[5] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He, and Zhenhua
Dong. 2018. DeepFM: An End-to-End Wide & Deep Learning Framework for
CTR Prediction. arXiv preprint arXiv:1804.04950 (2018).

[6] Simon Haykin and Neural Network. 2004. A comprehensive foundation. Neural
Networks 2, 2004 (2004), 41.

[7] Ruining He and Julian McAuley. 2016. Fusing similarity models with Markov
chains for sparse sequential recommendation. In Proceedings of the International
Conference on Data Mining (ICDM). IEEE, 191–200.

[8] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse
predictive analytics. In Proceedings of the International SIGIR Conference on Re-
search & Development in Information Retrieval. ACM, 355–364.

[9] Balázs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, and Domonkos Tikk.
2016. Parallel recurrent neural network architectures for feature-rich session-
based recommendations. In Proceedings of the ACM Conference on Recommender
Systems. ACM, 241–248.

[10] Liang Hu, Longbing Cao, Shoujin Wang, Guandong Xu, Jian Cao, and Zhiping
Gu. 2017. Diversifying personalized recommendation with user-session context.
In Proceedings of the International Joint Conference on Artificial Intelligence. AAAI
Press, 1858–1864.

[11] Liang Hu and Soingkui Jian. 2018. Interpretable Recommendation via Attraction
Modeling: Learning Multilevel Attractiveness over Multimodal Movie Contents..
In Proceedings of the International Joint Conference on Artificial Intelligence. AAAI
Press, 3400–3406.

[12] Jin Huang, Zhaochun Ren, Wayne Xin Zhao, Gaole He, Ji-RongWen, and Daxiang
Dong. 2019. Taxonomy-aware multi-hop reasoning networks for sequential
recommendation. In Proceedings of the ACM International Conference on Web
Search and Data Mining (WSDM). ACM, 573–581.

[13] Jizhou Huang, Wei Zhang, Yaming Sun, Haifeng Wang, and Ting Liu. 2018.
Improving Entity Recommendation with Search Log and Multi-Task Learning..
In Proceedings of the International Joint Conference on Artificial Intelligence. AAAI
Press, 4107–4114.

[14] Santosh Kabbur, Xia Ning, and George Karypis. 2013. Fism: factored item sim-
ilarity models for top-n recommender systems. In Proceedings of the SIGKDD
International Conference on Knowledge Discovery & Data Mining. ACM, 659–667.

[15] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv Preprint arXiv:1412.6980 (2014).

[16] Dejiang Kong and Fei Wu. 2018. HST-LSTM: A Hierarchical Spatial-Temporal
Long-Short Term Memory Network for Location Prediction.. In Proceedings of the
International Joint Conference on Artificial Intelligence. AAAI Press, 2341–2347.

[17] Yuanzhi Li and Yang Yuan. 2017. Convergence analysis of two-layer neural
networks with relu activation. In Advances in Neural Information Processing
Systems. 597–607.

[18] Zhi Li, Hongke Zhao, Qi Liu, Zhenya Huang, Tao Mei, and Enhong Chen. 2018.
Learning from history and present: next-item recommendation via discrimi-
natively exploiting user behaviors. In Proceedings of the SIGKDD International

Conference on Knowledge Discovery & Data Mining. ACM, 1734–1743.
[19] Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bor-

des, and Jason Weston. 2016. Key-value memory networks for directly reading
documents. arXiv Preprint arXiv:1606.03126 (2016).

[20] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the Conference on Uncertainty in Artificial Intelligence. AUAI Press, 452–461.

[21] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalizedMarkov chains for next-basket recommendation. In Proceedings
of the WWW Conference on the World Wide Web. ACM, 811–820.

[22] Tuukka Ruotsalo, Giulio Jacucci, Petri Myllymäki, and Samuel Kaski. 2015. Inter-
active intent modeling: Information discovery beyond search. Commun. ACM
58, 1 (2015), 86–92.

[23] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. 2007. Restricted
Boltzmann machines for collaborative filtering. In Proceedings of the International
Conference on Machine Learning. ACM, 791–798.

[24] Shuo Shang, Ruogu Ding, Kai Zheng, Christian S Jensen, Panos Kalnis, and
Xiaofang Zhou. 2014. Personalized trajectory matching in spatial networks. The
VLDB Journal—The International Journal on Very Large Data Bases 23, 3 (2014),
449–468.

[25] Sainbayar Sukhbaatar, JasonWeston, Rob Fergus, et al. 2015. End-to-end memory
networks. In Advances in Neural Information Processing Systems. 2440–2448.

[26] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show
and tell: A neural image caption generator. In Proceedings of the Conference on
Computer Vision and Pattern Recognition. IEEE, 3156–3164.

[27] Pengfei Wang, Jiafeng Guo, Yanyan Lan, Jun Xu, Shengxian Wan, and Xueqi
Cheng. 2015. Learning hierarchical representation model for nextbasket recom-
mendation. In Proceedings of the International SIGIR Conference on Research &
Development in Information Retrieval. ACM, 403–412.

[28] Chao-YuanWu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing. 2017.
Recurrent recommender networks. In Proceedings of the International Conference
on Web Search and Data Mining (WSDM). ACM, 495–503.

[29] Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua.
2017. Attentional factorization machines: Learning the weight of feature interac-
tions via attention networks. arXiv Preprint arXiv:1708.04617 (2017).

[30] Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Jiajie Xu, Victor S Sheng S Sheng,
Zhiming Cui, Xiaofang Zhou, and Hui Xiong. 2019. Recurrent Convolutional
Neural Network for Sequential Recommendation. In Proceedings of the WWW
Conference on World Wide Web. ACM, 3398–3404.

[31] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard
Hovy. 2016. Hierarchical attention networks for document classification. In
Proceedings of the Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. 1480–1489.

[32] Ghim-Eng Yap, Xiao-Li Li, and S Yu Philip. 2012. Effective next-items recom-
mendation via personalized sequential pattern mining. In Proceedings of the
International Conference on Database Systems for Advanced Applications. Springer,
48–64.

[33] Haochao Ying, Jian Wu, Guandong Xu, Yanchi Liu, Tingting Liang, Xiao Zhang,
and Hui Xiong. 2019. Time-aware metric embedding with asymmetric projection
for successive POI recommendation. World Wide Web 22, 5 (2019), 2209–2224.

[34] Haochao Ying, Fuzhen Zhuang, Fuzheng Zhang, Yanchi Liu, Guandong Xu, Xing
Xie, Hui Xiong, and Jian Wu. 2018. Sequential Recommender System based
on Hierarchical Attention Networks. In Proceedings of the International Joint
Conference on Artificial Intelligence. AAAI Press.

[35] Shuai Zhang, Yi Tay, Lina Yao, Aixin Sun, and Jake An. 2019. Next Item Rec-
ommendation with Self-Attentive Metric Learning. In Proceedings of the AAAI
Conference on Artificial Intelligence. AAAI Press.

[36] Hongke Zhao, Qi Liu, Hengshu Zhu, Yong Ge, Enhong Chen, Yan Zhu, and
Junping Du. 2018. A sequential approach to market state modeling and analysis
in online p2p lending. IEEE Transactions on Systems, Man and Cybernetics: Systems
48, 1 (2018), 21–33.

Technical Presentation  WSDM ’20, February 3–7, 2020, Houston, TX, USA

815


	Abstract
	1 Introduction
	2 Related Work
	3 The Proposed Method
	3.1 Problem Formulation
	3.2 Overview
	3.3 General Embedding Construction
	3.4 Semantic Category Embedding Construction
	3.5 KA-MB & HWU
	3.6  KA-MemNN
	3.7 Model Learning

	4 Experiments
	4.1 Experimental Setup
	4.2 Comparison of Performance
	4.3 Influence of Components 
	4.4 Influence of Hyper-parameters
	4.5  Visualization of Attention

	5 Conclusion
	References



